Cargando…
Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators
BACKGROUND: Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557557/ https://www.ncbi.nlm.nih.gov/pubmed/28807014 http://dx.doi.org/10.1186/s13287-017-0638-7 |
_version_ | 1783257230427029504 |
---|---|
author | Bhuvanalakshmi, G. Arfuso, Frank Kumar, Alan Prem Dharmarajan, Arun Warrier, Sudha |
author_facet | Bhuvanalakshmi, G. Arfuso, Frank Kumar, Alan Prem Dharmarajan, Arun Warrier, Sudha |
author_sort | Bhuvanalakshmi, G. |
collection | PubMed |
description | BACKGROUND: Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJMSCs) into the cardiomyocyte lineage via epigenetic manipulations. METHODS: We introduced these changes using inhibitors of DNA methyl transferase and histone deacetylase, DC301, DC302, and DC303, in various combinations. We characterized for cardiogenic differentiation by assessing the expression of cardiac-specific markers by immunolocalization, quantitative RT-PCR, and flow cytometry. Cardiac functional studies were performed by FURA2AM staining and Greiss assay. The role of Wnt signaling during cardiac differentiation was analyzed by quantitative RT-PCR. In-vivo studies were performed in a doxorubicin-induced cardiotoxic mouse model by injecting cardiac progenitor cells. Promoter methylation status of the cardiac transcription factor Nkx2.5 and the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), after cardiac differentiation was studied by bisulfite sequencing. RESULTS: By induction with DC301 and DC302, WJMSCs differentiated into cardiomyocyte-like structures with an upregulation of Wnt antagonists, sFRP3 and sFRP4, and Dickkopf (Dkk)1 and Dkk3. The cardiac function enhancer, vinculin, and DDX20, a DEAD-box RNA helicase, were also upregulated in differentiated cardiomyocytes. Additionally, bisulfite sequencing revealed, for the first time in cardiogenesis, that sFRP4 is activated by promoter CpG island demethylation. In vivo, these MSC-derived cardiac progenitors could not only successfully engraft to the site of cardiac injury in mice with doxorubicin-induced cardiac injury, but also form functional cardiomyocytes and restore cardiac function. CONCLUSION: The present study unveils a link between Wnt inhibition and epigenetic modification to initiate cardiac differentiation, which could enhance the efficacy of stem cell therapy for ischemic heart disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0638-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5557557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55575572017-08-16 Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators Bhuvanalakshmi, G. Arfuso, Frank Kumar, Alan Prem Dharmarajan, Arun Warrier, Sudha Stem Cell Res Ther Research BACKGROUND: Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJMSCs) into the cardiomyocyte lineage via epigenetic manipulations. METHODS: We introduced these changes using inhibitors of DNA methyl transferase and histone deacetylase, DC301, DC302, and DC303, in various combinations. We characterized for cardiogenic differentiation by assessing the expression of cardiac-specific markers by immunolocalization, quantitative RT-PCR, and flow cytometry. Cardiac functional studies were performed by FURA2AM staining and Greiss assay. The role of Wnt signaling during cardiac differentiation was analyzed by quantitative RT-PCR. In-vivo studies were performed in a doxorubicin-induced cardiotoxic mouse model by injecting cardiac progenitor cells. Promoter methylation status of the cardiac transcription factor Nkx2.5 and the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), after cardiac differentiation was studied by bisulfite sequencing. RESULTS: By induction with DC301 and DC302, WJMSCs differentiated into cardiomyocyte-like structures with an upregulation of Wnt antagonists, sFRP3 and sFRP4, and Dickkopf (Dkk)1 and Dkk3. The cardiac function enhancer, vinculin, and DDX20, a DEAD-box RNA helicase, were also upregulated in differentiated cardiomyocytes. Additionally, bisulfite sequencing revealed, for the first time in cardiogenesis, that sFRP4 is activated by promoter CpG island demethylation. In vivo, these MSC-derived cardiac progenitors could not only successfully engraft to the site of cardiac injury in mice with doxorubicin-induced cardiac injury, but also form functional cardiomyocytes and restore cardiac function. CONCLUSION: The present study unveils a link between Wnt inhibition and epigenetic modification to initiate cardiac differentiation, which could enhance the efficacy of stem cell therapy for ischemic heart disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0638-7) contains supplementary material, which is available to authorized users. BioMed Central 2017-08-14 /pmc/articles/PMC5557557/ /pubmed/28807014 http://dx.doi.org/10.1186/s13287-017-0638-7 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Bhuvanalakshmi, G. Arfuso, Frank Kumar, Alan Prem Dharmarajan, Arun Warrier, Sudha Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title | Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title_full | Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title_fullStr | Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title_full_unstemmed | Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title_short | Epigenetic reprogramming converts human Wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators |
title_sort | epigenetic reprogramming converts human wharton’s jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of wnt mediators |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557557/ https://www.ncbi.nlm.nih.gov/pubmed/28807014 http://dx.doi.org/10.1186/s13287-017-0638-7 |
work_keys_str_mv | AT bhuvanalakshmig epigeneticreprogrammingconvertshumanwhartonsjellymesenchymalstemcellsintofunctionalcardiomyocytesbydifferentialregulationofwntmediators AT arfusofrank epigeneticreprogrammingconvertshumanwhartonsjellymesenchymalstemcellsintofunctionalcardiomyocytesbydifferentialregulationofwntmediators AT kumaralanprem epigeneticreprogrammingconvertshumanwhartonsjellymesenchymalstemcellsintofunctionalcardiomyocytesbydifferentialregulationofwntmediators AT dharmarajanarun epigeneticreprogrammingconvertshumanwhartonsjellymesenchymalstemcellsintofunctionalcardiomyocytesbydifferentialregulationofwntmediators AT warriersudha epigeneticreprogrammingconvertshumanwhartonsjellymesenchymalstemcellsintofunctionalcardiomyocytesbydifferentialregulationofwntmediators |