Cargando…

Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?

Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic divers...

Descripción completa

Detalles Bibliográficos
Autores principales: Evans, Suzanna M., Vergés, Adriana, Poore, Alistair G. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557787/
https://www.ncbi.nlm.nih.gov/pubmed/28855915
http://dx.doi.org/10.3389/fpls.2017.01417
_version_ 1783257267082100736
author Evans, Suzanna M.
Vergés, Adriana
Poore, Alistair G. B.
author_facet Evans, Suzanna M.
Vergés, Adriana
Poore, Alistair G. B.
author_sort Evans, Suzanna M.
collection PubMed
description Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic diversity is assumed to benefit threatened species due to the increased likelihood of those populations having genotypes that can persist under environmental change. To test this idea, we conducted an in situ shading experiment with six geographically distinct meadows of the threatened seagrass Posidonia australis that vary in genetic diversity. Different genotypes within meadows varied widely in their physiological and growth responses to reduced light during a simulated short-term turbidity event. The majority of meadows were resistant to the sudden reduction in light availability, but a small subset of meadows with low genotypic diversity were particularly vulnerable to the early effects of shading, showing substantially reduced growth rates after only 3 weeks. Using the photosynthetic performance (maximum quantum yield) of known genotypes, we simulated meadows of varying genetic diversity to show that higher diversity can increase meadow resilience to stress by ensuring a high probability of including a high-performing genotype. These results support the hypothesis that complementarity among genotypes enhances the adaptive capacity of a population, and have significant implications for the conservation of declining P. australis meadows close to the species range edge on the east coast of Australia, where the genotypic diversity is low.
format Online
Article
Text
id pubmed-5557787
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-55577872017-08-30 Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience? Evans, Suzanna M. Vergés, Adriana Poore, Alistair G. B. Front Plant Sci Plant Science Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic diversity is assumed to benefit threatened species due to the increased likelihood of those populations having genotypes that can persist under environmental change. To test this idea, we conducted an in situ shading experiment with six geographically distinct meadows of the threatened seagrass Posidonia australis that vary in genetic diversity. Different genotypes within meadows varied widely in their physiological and growth responses to reduced light during a simulated short-term turbidity event. The majority of meadows were resistant to the sudden reduction in light availability, but a small subset of meadows with low genotypic diversity were particularly vulnerable to the early effects of shading, showing substantially reduced growth rates after only 3 weeks. Using the photosynthetic performance (maximum quantum yield) of known genotypes, we simulated meadows of varying genetic diversity to show that higher diversity can increase meadow resilience to stress by ensuring a high probability of including a high-performing genotype. These results support the hypothesis that complementarity among genotypes enhances the adaptive capacity of a population, and have significant implications for the conservation of declining P. australis meadows close to the species range edge on the east coast of Australia, where the genotypic diversity is low. Frontiers Media S.A. 2017-08-14 /pmc/articles/PMC5557787/ /pubmed/28855915 http://dx.doi.org/10.3389/fpls.2017.01417 Text en Copyright © 2017 Evans, Vergés and Poore. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Evans, Suzanna M.
Vergés, Adriana
Poore, Alistair G. B.
Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title_full Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title_fullStr Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title_full_unstemmed Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title_short Genotypic Diversity and Short-term Response to Shading Stress in a Threatened Seagrass: Does Low Diversity Mean Low Resilience?
title_sort genotypic diversity and short-term response to shading stress in a threatened seagrass: does low diversity mean low resilience?
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557787/
https://www.ncbi.nlm.nih.gov/pubmed/28855915
http://dx.doi.org/10.3389/fpls.2017.01417
work_keys_str_mv AT evanssuzannam genotypicdiversityandshorttermresponsetoshadingstressinathreatenedseagrassdoeslowdiversitymeanlowresilience
AT vergesadriana genotypicdiversityandshorttermresponsetoshadingstressinathreatenedseagrassdoeslowdiversitymeanlowresilience
AT poorealistairgb genotypicdiversityandshorttermresponsetoshadingstressinathreatenedseagrassdoeslowdiversitymeanlowresilience