Cargando…
Inferring structural connectivity using Ising couplings in models of neuronal networks
Functional connectivity metrics have been widely used to infer the underlying structural connectivity in neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect of indirect interactions and give good results in inferring the true anatomical connections. Howev...
Autores principales: | Kadirvelu, Balasundaram, Hayashi, Yoshikatsu, Nasuto, Slawomir J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557813/ https://www.ncbi.nlm.nih.gov/pubmed/28811468 http://dx.doi.org/10.1038/s41598-017-05462-2 |
Ejemplares similares
-
Publisher Correction: Inferring structural connectivity using Ising couplings in models of neuronal networks
por: Kadirvelu, Balasundaram, et al.
Publicado: (2018) -
Inferring network connectivity using kinetic Ising models
por: Hertz, John A, et al.
Publicado: (2010) -
Modeling the Ongoing Dynamics of Short and Long-Range Temporal Correlations in Broadband EEG During Movement
por: Wairagkar, Maitreyee, et al.
Publicado: (2019) -
Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay
por: Eberle, Henry, et al.
Publicado: (2018) -
Bayesian inference for low-rank Ising networks
por: Marsman, Maarten, et al.
Publicado: (2015)