Cargando…

Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature

By Cheeger’s isoperimetric constants, some lower bounds and upper bounds of [Formula: see text] , the first eigenvalue on a complete surface of constant curvature, are given. Some Bonnesen-style inequalities and reverse Bonnesen-style inequalities for the first eigenvalue are obtained. Those Bonnese...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Niufa, Zhou, Jiazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557883/
https://www.ncbi.nlm.nih.gov/pubmed/28860691
http://dx.doi.org/10.1186/s13660-017-1462-4
_version_ 1783257289933717504
author Fang, Niufa
Zhou, Jiazu
author_facet Fang, Niufa
Zhou, Jiazu
author_sort Fang, Niufa
collection PubMed
description By Cheeger’s isoperimetric constants, some lower bounds and upper bounds of [Formula: see text] , the first eigenvalue on a complete surface of constant curvature, are given. Some Bonnesen-style inequalities and reverse Bonnesen-style inequalities for the first eigenvalue are obtained. Those Bonnesen-style inequalities obtained are stronger than the well-known Osserman’s results and the upper bound is stronger than Osserman’s results (Osserman in Proceedings of the International Congress of Mathematicians, Helsinki, 1978).
format Online
Article
Text
id pubmed-5557883
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-55578832017-08-29 Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature Fang, Niufa Zhou, Jiazu J Inequal Appl Research By Cheeger’s isoperimetric constants, some lower bounds and upper bounds of [Formula: see text] , the first eigenvalue on a complete surface of constant curvature, are given. Some Bonnesen-style inequalities and reverse Bonnesen-style inequalities for the first eigenvalue are obtained. Those Bonnesen-style inequalities obtained are stronger than the well-known Osserman’s results and the upper bound is stronger than Osserman’s results (Osserman in Proceedings of the International Congress of Mathematicians, Helsinki, 1978). Springer International Publishing 2017-08-15 2017 /pmc/articles/PMC5557883/ /pubmed/28860691 http://dx.doi.org/10.1186/s13660-017-1462-4 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Fang, Niufa
Zhou, Jiazu
Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title_full Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title_fullStr Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title_full_unstemmed Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title_short Bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
title_sort bonnesen-style inequality for the first eigenvalue on a complete surface of constant curvature
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557883/
https://www.ncbi.nlm.nih.gov/pubmed/28860691
http://dx.doi.org/10.1186/s13660-017-1462-4
work_keys_str_mv AT fangniufa bonnesenstyleinequalityforthefirsteigenvalueonacompletesurfaceofconstantcurvature
AT zhoujiazu bonnesenstyleinequalityforthefirsteigenvalueonacompletesurfaceofconstantcurvature