Cargando…
Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases
BACKGROUND: Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant a...
Autores principales: | Krämer, Andreas, Shah, Sohela, Rebres, Robert Anthony, Tang, Susan, Richards, Daniel Rene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558185/ https://www.ncbi.nlm.nih.gov/pubmed/28812537 http://dx.doi.org/10.1186/s12864-017-3910-4 |
Ejemplares similares
-
Using network analysis to identify leverage points based on causal loop diagrams leads to false inference
por: Crielaard, Loes, et al.
Publicado: (2023) -
Empowered genome community: leveraging a bioinformatics platform as a citizen–scientist collaboration tool
por: Wendelsdorf, Katherine, et al.
Publicado: (2015) -
Leveraging IgG N-glycosylation to infer the causality between T2D and hypertension
por: Wang, Haotian, et al.
Publicado: (2023) -
ProInfer: An interpretable protein inference tool leveraging on biological networks
por: Peng, Hui, et al.
Publicado: (2023) -
Inferring and quantifying causality in neuronal networks
por: Chicharro, Daniel, et al.
Publicado: (2011)