Cargando…
White matter microstructure of 6-year old children born preterm and full term
AIM: We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9–17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD: We obtaine...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558468/ https://www.ncbi.nlm.nih.gov/pubmed/28840098 http://dx.doi.org/10.1016/j.nicl.2017.08.005 |
_version_ | 1783257395026198528 |
---|---|
author | Dodson, Cory K. Travis, Katherine E. Ben-Shachar, Michal Feldman, Heidi M. |
author_facet | Dodson, Cory K. Travis, Katherine E. Ben-Shachar, Michal Feldman, Heidi M. |
author_sort | Dodson, Cory K. |
collection | PubMed |
description | AIM: We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9–17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD: We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm(2)) and 96 diffusion directions (b = 2500 s/mm(2)). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS: Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION: The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth. |
format | Online Article Text |
id | pubmed-5558468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-55584682017-08-24 White matter microstructure of 6-year old children born preterm and full term Dodson, Cory K. Travis, Katherine E. Ben-Shachar, Michal Feldman, Heidi M. Neuroimage Clin Regular Article AIM: We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9–17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD: We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm(2)) and 96 diffusion directions (b = 2500 s/mm(2)). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS: Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION: The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth. Elsevier 2017-08-08 /pmc/articles/PMC5558468/ /pubmed/28840098 http://dx.doi.org/10.1016/j.nicl.2017.08.005 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Dodson, Cory K. Travis, Katherine E. Ben-Shachar, Michal Feldman, Heidi M. White matter microstructure of 6-year old children born preterm and full term |
title | White matter microstructure of 6-year old children born preterm and full term |
title_full | White matter microstructure of 6-year old children born preterm and full term |
title_fullStr | White matter microstructure of 6-year old children born preterm and full term |
title_full_unstemmed | White matter microstructure of 6-year old children born preterm and full term |
title_short | White matter microstructure of 6-year old children born preterm and full term |
title_sort | white matter microstructure of 6-year old children born preterm and full term |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558468/ https://www.ncbi.nlm.nih.gov/pubmed/28840098 http://dx.doi.org/10.1016/j.nicl.2017.08.005 |
work_keys_str_mv | AT dodsoncoryk whitemattermicrostructureof6yearoldchildrenbornpretermandfullterm AT traviskatherinee whitemattermicrostructureof6yearoldchildrenbornpretermandfullterm AT benshacharmichal whitemattermicrostructureof6yearoldchildrenbornpretermandfullterm AT feldmanheidim whitemattermicrostructureof6yearoldchildrenbornpretermandfullterm |