Cargando…
An Update on Statistical Boosting in Biomedicine
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. Th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/ https://www.ncbi.nlm.nih.gov/pubmed/28831290 http://dx.doi.org/10.1155/2017/6083072 |
_version_ | 1783257417701654528 |
---|---|
author | Mayr, Andreas Hofner, Benjamin Waldmann, Elisabeth Hepp, Tobias Meyer, Sebastian Gefeller, Olaf |
author_facet | Mayr, Andreas Hofner, Benjamin Waldmann, Elisabeth Hepp, Tobias Meyer, Sebastian Gefeller, Olaf |
author_sort | Mayr, Andreas |
collection | PubMed |
description | Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine. |
format | Online Article Text |
id | pubmed-5558647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-55586472017-08-22 An Update on Statistical Boosting in Biomedicine Mayr, Andreas Hofner, Benjamin Waldmann, Elisabeth Hepp, Tobias Meyer, Sebastian Gefeller, Olaf Comput Math Methods Med Review Article Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine. Hindawi 2017 2017-08-02 /pmc/articles/PMC5558647/ /pubmed/28831290 http://dx.doi.org/10.1155/2017/6083072 Text en Copyright © 2017 Andreas Mayr et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Mayr, Andreas Hofner, Benjamin Waldmann, Elisabeth Hepp, Tobias Meyer, Sebastian Gefeller, Olaf An Update on Statistical Boosting in Biomedicine |
title | An Update on Statistical Boosting in Biomedicine |
title_full | An Update on Statistical Boosting in Biomedicine |
title_fullStr | An Update on Statistical Boosting in Biomedicine |
title_full_unstemmed | An Update on Statistical Boosting in Biomedicine |
title_short | An Update on Statistical Boosting in Biomedicine |
title_sort | update on statistical boosting in biomedicine |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/ https://www.ncbi.nlm.nih.gov/pubmed/28831290 http://dx.doi.org/10.1155/2017/6083072 |
work_keys_str_mv | AT mayrandreas anupdateonstatisticalboostinginbiomedicine AT hofnerbenjamin anupdateonstatisticalboostinginbiomedicine AT waldmannelisabeth anupdateonstatisticalboostinginbiomedicine AT hepptobias anupdateonstatisticalboostinginbiomedicine AT meyersebastian anupdateonstatisticalboostinginbiomedicine AT gefellerolaf anupdateonstatisticalboostinginbiomedicine AT mayrandreas updateonstatisticalboostinginbiomedicine AT hofnerbenjamin updateonstatisticalboostinginbiomedicine AT waldmannelisabeth updateonstatisticalboostinginbiomedicine AT hepptobias updateonstatisticalboostinginbiomedicine AT meyersebastian updateonstatisticalboostinginbiomedicine AT gefellerolaf updateonstatisticalboostinginbiomedicine |