Cargando…

An Update on Statistical Boosting in Biomedicine

Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Mayr, Andreas, Hofner, Benjamin, Waldmann, Elisabeth, Hepp, Tobias, Meyer, Sebastian, Gefeller, Olaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/
https://www.ncbi.nlm.nih.gov/pubmed/28831290
http://dx.doi.org/10.1155/2017/6083072
_version_ 1783257417701654528
author Mayr, Andreas
Hofner, Benjamin
Waldmann, Elisabeth
Hepp, Tobias
Meyer, Sebastian
Gefeller, Olaf
author_facet Mayr, Andreas
Hofner, Benjamin
Waldmann, Elisabeth
Hepp, Tobias
Meyer, Sebastian
Gefeller, Olaf
author_sort Mayr, Andreas
collection PubMed
description Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
format Online
Article
Text
id pubmed-5558647
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-55586472017-08-22 An Update on Statistical Boosting in Biomedicine Mayr, Andreas Hofner, Benjamin Waldmann, Elisabeth Hepp, Tobias Meyer, Sebastian Gefeller, Olaf Comput Math Methods Med Review Article Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine. Hindawi 2017 2017-08-02 /pmc/articles/PMC5558647/ /pubmed/28831290 http://dx.doi.org/10.1155/2017/6083072 Text en Copyright © 2017 Andreas Mayr et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Mayr, Andreas
Hofner, Benjamin
Waldmann, Elisabeth
Hepp, Tobias
Meyer, Sebastian
Gefeller, Olaf
An Update on Statistical Boosting in Biomedicine
title An Update on Statistical Boosting in Biomedicine
title_full An Update on Statistical Boosting in Biomedicine
title_fullStr An Update on Statistical Boosting in Biomedicine
title_full_unstemmed An Update on Statistical Boosting in Biomedicine
title_short An Update on Statistical Boosting in Biomedicine
title_sort update on statistical boosting in biomedicine
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/
https://www.ncbi.nlm.nih.gov/pubmed/28831290
http://dx.doi.org/10.1155/2017/6083072
work_keys_str_mv AT mayrandreas anupdateonstatisticalboostinginbiomedicine
AT hofnerbenjamin anupdateonstatisticalboostinginbiomedicine
AT waldmannelisabeth anupdateonstatisticalboostinginbiomedicine
AT hepptobias anupdateonstatisticalboostinginbiomedicine
AT meyersebastian anupdateonstatisticalboostinginbiomedicine
AT gefellerolaf anupdateonstatisticalboostinginbiomedicine
AT mayrandreas updateonstatisticalboostinginbiomedicine
AT hofnerbenjamin updateonstatisticalboostinginbiomedicine
AT waldmannelisabeth updateonstatisticalboostinginbiomedicine
AT hepptobias updateonstatisticalboostinginbiomedicine
AT meyersebastian updateonstatisticalboostinginbiomedicine
AT gefellerolaf updateonstatisticalboostinginbiomedicine