Cargando…
Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping
BACKGROUND: Using whole genome sequence data might improve genomic prediction accuracy, when compared with high-density SNP arrays, and could lead to identification of casual mutations affecting complex traits. For some traits, the most accurate genomic predictions are achieved with non-linear Bayes...
Autores principales: | Wang, Tingting, Chen, Yi-Ping Phoebe, MacLeod, Iona M., Pryce, Jennie E., Goddard, Michael E., Hayes, Ben J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558724/ https://www.ncbi.nlm.nih.gov/pubmed/28810831 http://dx.doi.org/10.1186/s12864-017-4030-x |
Ejemplares similares
-
A hybrid expectation maximisation and MCMC sampling algorithm to implement Bayesian mixture model based genomic prediction and QTL mapping
por: Wang, Tingting, et al.
Publicado: (2016) -
Rare Variants in Transcript and Potential Regulatory Regions Explain a Small Percentage of the Missing Heritability of Complex Traits in Cattle
por: Gonzalez-Recio, Oscar, et al.
Publicado: (2015) -
A multi-trait Bayesian method for mapping QTL and genomic prediction
por: Kemper, Kathryn E., et al.
Publicado: (2018) -
Fine-mapping sequence mutations with a major effect on oligosaccharide content in bovine milk
por: Liu, Zhiqian, et al.
Publicado: (2019) -
BayesR3 enables fast MCMC blocked processing for largescale multi-trait genomic prediction and QTN mapping analysis
por: Breen, Edmond J., et al.
Publicado: (2022)