Cargando…
A neural network multi-task learning approach to biomedical named entity recognition
BACKGROUND: Named Entity Recognition (NER) is a key task in biomedical text mining. Accurate NER systems require task-specific, manually-annotated datasets, which are expensive to develop and thus limited in size. Since such datasets contain related but different information, an interesting question...
Autores principales: | Crichton, Gamal, Pyysalo, Sampo, Chiu, Billy, Korhonen, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558737/ https://www.ncbi.nlm.nih.gov/pubmed/28810903 http://dx.doi.org/10.1186/s12859-017-1776-8 |
Ejemplares similares
-
Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches
por: Crichton, Gamal, et al.
Publicado: (2018) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Biomedical named entity recognition with the combined feature attention and fully-shared multi-task learning
por: Zhang, Zhiyu, et al.
Publicado: (2022) -
CollaboNet: collaboration of deep neural networks for biomedical named entity recognition
por: Yoon, Wonjin, et al.
Publicado: (2019) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019)