Cargando…

Phase space of modified Gauss–Bonnet gravity

We investigate the evolution of non-vacuum Friedmann–Lemaître–Robertson–Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss–Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several...

Descripción completa

Detalles Bibliográficos
Autores principales: Carloni, Sante, Mimoso, José P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559620/
https://www.ncbi.nlm.nih.gov/pubmed/28867963
http://dx.doi.org/10.1140/epjc/s10052-017-5110-4
Descripción
Sumario:We investigate the evolution of non-vacuum Friedmann–Lemaître–Robertson–Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss–Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f(R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss–Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.