Cargando…

Toward Predicting Social Support Needs in Online Health Social Networks

BACKGROUND: While online health social networks (OHSNs) serve as an effective platform for patients to fulfill their various social support needs, predicting the needs of users and providing tailored information remains a challenge. OBJECTIVE: The objective of this study was to discriminate importan...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Min-Je, Kim, Sung-Hee, Lee, Sukwon, Kwon, Bum Chul, Yi, Ji Soo, Choo, Jaegul, Huh, Jina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559652/
https://www.ncbi.nlm.nih.gov/pubmed/28768609
http://dx.doi.org/10.2196/jmir.7660
Descripción
Sumario:BACKGROUND: While online health social networks (OHSNs) serve as an effective platform for patients to fulfill their various social support needs, predicting the needs of users and providing tailored information remains a challenge. OBJECTIVE: The objective of this study was to discriminate important features for identifying users’ social support needs based on knowledge gathered from survey data. This study also provides guidelines for a technical framework, which can be used to predict users’ social support needs based on raw data collected from OHSNs. METHODS: We initially conducted a Web-based survey with 184 OHSN users. From this survey data, we extracted 34 features based on 5 categories: (1) demographics, (2) reading behavior, (3) posting behavior, (4) perceived roles in OHSNs, and (5) values sought in OHSNs. Features from the first 4 categories were used as variables for binary classification. For the prediction outcomes, we used features from the last category: the needs for emotional support, experience-based information, unconventional information, and medical facts. We compared 5 binary classifier algorithms: gradient boosting tree, random forest, decision tree, support vector machines, and logistic regression. We then calculated the scores of the area under the receiver operating characteristic (ROC) curve (AUC) to understand the comparative effectiveness of the used features. RESULTS: The best performance was AUC scores of 0.89 for predicting users seeking emotional support, 0.86 for experience-based information, 0.80 for unconventional information, and 0.83 for medical facts. With the gradient boosting tree as our best performing model, we analyzed the strength of individual features in predicting one’s social support need. Among other discoveries, we found that users seeking emotional support tend to post more in OHSNs compared with others. CONCLUSIONS: We developed an initial framework for automatically predicting social support needs in OHSNs using survey data. Future work should involve nonsurvey data to evaluate the feasibility of the framework. Our study contributes to providing personalized social support in OHSNs.