Cargando…
Using k-dependence causal forest to mine the most significant dependency relationships among clinical variables for thyroid disease diagnosis
Numerous data mining models have been proposed to construct computer-aided medical expert systems. Bayesian network classifiers (BNCs) are more distinct and understandable than other models. To graphically describe the dependency relationships among clinical variables for thyroid disease diagnosis a...
Autores principales: | Wang, LiMin, Cao, FangYuan, Wang, ShuangCheng, Sun, MingHui, Dong, LiYan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560694/ https://www.ncbi.nlm.nih.gov/pubmed/28817592 http://dx.doi.org/10.1371/journal.pone.0182070 |
Ejemplares similares
-
Mining causal relationships among clinical variables for cancer diagnosis based on Bayesian analysis
por: Wang, LiMin
Publicado: (2015) -
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
por: Liu, Yang, et al.
Publicado: (2018) -
Discriminatory Target Learning: Mining Significant Dependence Relationships from Labeled and Unlabeled Data
por: Duan, Zhi-Yi, et al.
Publicado: (2019) -
Understanding does not depend on (causal) explanation
por: Verreault-Julien, Philippe
Publicado: (2019) -
Granger causal time-dependent source connectivity in the somatosensory network
por: Gao, Lin, et al.
Publicado: (2015)