Cargando…

Integrating Triangle and Jaccard similarities for recommendation

This paper proposes a new measure for recommendation through integrating Triangle and Jaccard similarities. The Triangle similarity considers both the length and the angle of rating vectors between them, while the Jaccard similarity considers non co-rating users. We compare the new similarity measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Shuang-Bo, Zhang, Zhi-Heng, Dong, Xin-Ling, Zhang, Heng-Ru, Li, Tong-Jun, Zhang, Lin, Min, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560696/
https://www.ncbi.nlm.nih.gov/pubmed/28817692
http://dx.doi.org/10.1371/journal.pone.0183570
Descripción
Sumario:This paper proposes a new measure for recommendation through integrating Triangle and Jaccard similarities. The Triangle similarity considers both the length and the angle of rating vectors between them, while the Jaccard similarity considers non co-rating users. We compare the new similarity measure with eight state-of-the-art ones on four popular datasets under the leave-one-out scenario. Results show that the new measure outperforms all the counterparts in terms of the mean absolute error and the root mean square error.