Cargando…

Immunohistochemical analysis reveals variations in proteasome tissue expression in C. elegans

The ubiquitin-proteasome system (UPS) plays a crucial part in normal cell function by mediating intracellular protein clearance. We have previously shown that UPS-mediated protein degradation varies in a cell type-specific manner in C. elegans. Here, we use formalin-fixed, paraffin-embedded C. elega...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikkonen, Elisa, Haglund, Caj, Holmberg, Carina I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560697/
https://www.ncbi.nlm.nih.gov/pubmed/28817671
http://dx.doi.org/10.1371/journal.pone.0183403
Descripción
Sumario:The ubiquitin-proteasome system (UPS) plays a crucial part in normal cell function by mediating intracellular protein clearance. We have previously shown that UPS-mediated protein degradation varies in a cell type-specific manner in C. elegans. Here, we use formalin-fixed, paraffin-embedded C. elegans sections to enable studies on endogenous proteasome tissue expression. We show that the proteasome immunoreactivity pattern differs between cell types and within subcellular compartments in adult wild-type (N2) C. elegans. Interestingly, widespread knockdown of proteasome subunits by RNAi results in tissue-specific changes in proteasome expression instead of a uniform response. In addition, long-lived daf-2(e1370) mutants with impaired insulin/IGF-1 signaling (IIS) display similar proteasome tissue expression as aged-matched wild-type animals. Our study emphasizes the importance of alternate approaches to the commonly used whole animal lysate-based methods to detect changes in proteasome expression occurring at the sub-cellular, cell or tissue resolution level in a multicellular organism.