Cargando…
Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties...
Autores principales: | Ramachandran, Parameswaran, Sánchez-Taltavull, Daniel, Perkins, Theodore J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560700/ https://www.ncbi.nlm.nih.gov/pubmed/28817636 http://dx.doi.org/10.1371/journal.pone.0183103 |
Ejemplares similares
-
Bayesian Correlation Analysis for Sequence Count Data
por: Sánchez-Taltavull, Daniel, et al.
Publicado: (2016) -
Bayesian correlation is a robust gene similarity measure for single-cell RNA-seq data
por: Sanchez-Taltavull, Daniel, et al.
Publicado: (2020) -
Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma
por: Sun, Jingchun, et al.
Publicado: (2012) -
Adaptive bandwidth kernel density estimation for next-generation sequencing data
por: Ramachandran, Parameswaran, et al.
Publicado: (2013) -
Winsorization for Robust Bayesian Neural Networks
por: Sharma, Somya, et al.
Publicado: (2021)