Cargando…
Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subseq...
Autores principales: | Cichonska, Anna, Ravikumar, Balaguru, Parri, Elina, Timonen, Sanna, Pahikkala, Tapio, Airola, Antti, Wennerberg, Krister, Rousu, Juho, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560747/ https://www.ncbi.nlm.nih.gov/pubmed/28787438 http://dx.doi.org/10.1371/journal.pcbi.1005678 |
Ejemplares similares
-
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018) -
Modeling drug combination effects via latent tensor reconstruction
por: Wang, Tianduanyi, et al.
Publicado: (2021) -
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
por: Julkunen, Heli, et al.
Publicado: (2020) -
Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations
por: Pahikkala, Tapio, et al.
Publicado: (2012) -
Regularized Machine Learning in the Genetic Prediction of Complex Traits
por: Okser, Sebastian, et al.
Publicado: (2014)