Cargando…
Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping
Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these focus on only one of the partners. We developed an ex...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560814/ https://www.ncbi.nlm.nih.gov/pubmed/28642272 http://dx.doi.org/10.1534/genetics.117.202531 |
_version_ | 1783257726000824320 |
---|---|
author | Guo, Yuelong Fudali, Sylwia Gimeno, Jacinta DiGennaro, Peter Chang, Stella Williamson, Valerie M. Bird, David McK. Nielsen, Dahlia M. |
author_facet | Guo, Yuelong Fudali, Sylwia Gimeno, Jacinta DiGennaro, Peter Chang, Stella Williamson, Valerie M. Bird, David McK. Nielsen, Dahlia M. |
author_sort | Guo, Yuelong |
collection | PubMed |
description | Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these focus on only one of the partners. We developed an expression quantitative trait locus (eQTL) mapping-based approach to identify cause-and-effect relationships between genes from two partners engaged in an interspecific interaction. We demonstrated the approach by assaying expression of 98 isogenic plants (Medicago truncatula), each inoculated with a genetically distinct line of the diploid parasitic nematode Meloidogyne hapla. With this design, systematic differences in gene expression across host plants could be mapped to genetic polymorphisms of their infecting parasites. The effects of parasite genotypes on plant gene expression were often substantial, with up to 90-fold (P = 3.2 × 10(−52)) changes in expression levels caused by individual parasite loci. Mapped loci included a number of pleiotropic sites, including one 87-kb parasite locus that modulated expression of >60 host genes. The 213 host genes identified were substantially enriched for transcription factors. We distilled higher-order connections between polymorphisms and genes from both species via network inference. To replicate our results and test whether effects were conserved across a broader host range, we performed a confirmatory experiment using M. hapla-infected tomato. This revealed that homologous genes were similarly affected. Finally, to validate the broader utility of cross-species eQTL mapping, we applied the strategy to data from a Salmonella infection study, successfully identifying polymorphisms in the human genome affecting bacterial expression. |
format | Online Article Text |
id | pubmed-5560814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-55608142017-08-21 Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping Guo, Yuelong Fudali, Sylwia Gimeno, Jacinta DiGennaro, Peter Chang, Stella Williamson, Valerie M. Bird, David McK. Nielsen, Dahlia M. Genetics Investigations Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these focus on only one of the partners. We developed an expression quantitative trait locus (eQTL) mapping-based approach to identify cause-and-effect relationships between genes from two partners engaged in an interspecific interaction. We demonstrated the approach by assaying expression of 98 isogenic plants (Medicago truncatula), each inoculated with a genetically distinct line of the diploid parasitic nematode Meloidogyne hapla. With this design, systematic differences in gene expression across host plants could be mapped to genetic polymorphisms of their infecting parasites. The effects of parasite genotypes on plant gene expression were often substantial, with up to 90-fold (P = 3.2 × 10(−52)) changes in expression levels caused by individual parasite loci. Mapped loci included a number of pleiotropic sites, including one 87-kb parasite locus that modulated expression of >60 host genes. The 213 host genes identified were substantially enriched for transcription factors. We distilled higher-order connections between polymorphisms and genes from both species via network inference. To replicate our results and test whether effects were conserved across a broader host range, we performed a confirmatory experiment using M. hapla-infected tomato. This revealed that homologous genes were similarly affected. Finally, to validate the broader utility of cross-species eQTL mapping, we applied the strategy to data from a Salmonella infection study, successfully identifying polymorphisms in the human genome affecting bacterial expression. Genetics Society of America 2017-08 2017-06-22 /pmc/articles/PMC5560814/ /pubmed/28642272 http://dx.doi.org/10.1534/genetics.117.202531 Text en Copyright © 2017 by the Genetics Society of America Available freely online through the author-supported open access option. |
spellingShingle | Investigations Guo, Yuelong Fudali, Sylwia Gimeno, Jacinta DiGennaro, Peter Chang, Stella Williamson, Valerie M. Bird, David McK. Nielsen, Dahlia M. Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title | Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title_full | Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title_fullStr | Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title_full_unstemmed | Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title_short | Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping |
title_sort | networks underpinning symbiosis revealed through cross-species eqtl mapping |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560814/ https://www.ncbi.nlm.nih.gov/pubmed/28642272 http://dx.doi.org/10.1534/genetics.117.202531 |
work_keys_str_mv | AT guoyuelong networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT fudalisylwia networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT gimenojacinta networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT digennaropeter networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT changstella networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT williamsonvaleriem networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT birddavidmck networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping AT nielsendahliam networksunderpinningsymbiosisrevealedthroughcrossspecieseqtlmapping |