Cargando…
Energy-free machine learning force field for aluminum
We used the machine learning technique of Li et al. (PRL 114, 2015) for molecular dynamics simulations. Atomic configurations were described by feature matrix based on internal vectors, and linear regression was used as a learning technique. We implemented this approach in the LAMMPS code. The metho...
Autores principales: | Kruglov, Ivan, Sergeev, Oleg, Yanilkin, Alexey, Oganov, Artem R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561031/ https://www.ncbi.nlm.nih.gov/pubmed/28819297 http://dx.doi.org/10.1038/s41598-017-08455-3 |
Ejemplares similares
-
Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity
por: Kruglov, Ivan A., et al.
Publicado: (2018) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Prediction of new thermodynamically stable aluminum oxides
por: Liu, Yue, et al.
Publicado: (2015) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Development of scalable and generalizable machine learned force field for polymers
por: Mohanty, Shaswat, et al.
Publicado: (2023)