Cargando…

CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function

MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters....

Descripción completa

Detalles Bibliográficos
Autores principales: Lataniotis, Lazaros, Albrecht, Andreas, Kok, Fatma O., Monfries, Clinton A. L., Benedetti, Lorena, Lawson, Nathan D., Hughes, Simon M., Steinhofel, Kathleen, Mayr, Manuel, Zampetaki, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561095/
https://www.ncbi.nlm.nih.gov/pubmed/28819307
http://dx.doi.org/10.1038/s41598-017-09268-0
Descripción
Sumario:MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters. We focused on four miRNA clusters composed of miRNA members of the same family, homo-clusters or different families, hetero-clusters. Our results highlight different regulatory mechanisms in miRNA cluster expression. In the case of the miR-497~195 cluster, editing of miR-195 led to a significant decrease in the expression of the other miRNA in the cluster, miR-497a. Although no gene editing was detected in the miR-497a genomic locus, computational simulation revealed alteration in the three dimensional structure of the pri-miR-497~195 that may affect its processing. In cluster miR-143~145 our results imply a feed-forward regulation, although structural changes cannot be ruled out. Furthermore, in the miR-17~92 and miR-106~25 clusters no interdependency in miRNA expression was observed. Our findings suggest that CRISPR/Cas9 is a powerful gene editing tool that can uncover novel mechanisms of clustered miRNA regulation and function.