Cargando…
Anti-biofilm effects of anthranilate on a broad range of bacteria
Anthranilate, one of tryptophan degradation products has been reported to interfere with biofilm formation by Pseudomonas aeruginosa. Here, we investigated the effects of anthranilate on biofilm formation by various bacteria and the mechanisms responsible. Anthranilate commonly inhibited biofilm for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561115/ https://www.ncbi.nlm.nih.gov/pubmed/28819217 http://dx.doi.org/10.1038/s41598-017-06540-1 |
Sumario: | Anthranilate, one of tryptophan degradation products has been reported to interfere with biofilm formation by Pseudomonas aeruginosa. Here, we investigated the effects of anthranilate on biofilm formation by various bacteria and the mechanisms responsible. Anthranilate commonly inhibited biofilm formation by P. aeruginosa, Vibrio vulnificus, Bacillus subtilis, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus, and disrupted biofilms preformed by these bacteria. Because anthranilate reduced intracellular c-di-GMP and enhanced swimming and swarming motilities in P. aeruginosa, V. vulnificus, B. subtilis, and S. enterica, it is likely that anthranilate disrupts biofilms by inducing the dispersion of these bacteria. On the other hand, in S. aureus, a non-flagellate bacterium that has no c-di-GMP signaling, anthranilate probably inhibits biofilm formation by reducing slime production. These results suggest that anthranilate has multiple ways for biofilm inhibition. Furthermore, because of its good biofilm inhibitory effects and lack of cytotoxicity to human cells even at high concentration, anthranilate appears to be a promising agent for inhibiting biofilm formation by a broad range of bacteria. |
---|