Cargando…
Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information
Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exp...
Autores principales: | An, Ji-Yong, Zhang, Lei, Zhou, Yong, Zhao, Yu-Jun, Wang, Da-Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561767/ https://www.ncbi.nlm.nih.gov/pubmed/29086182 http://dx.doi.org/10.1186/s13321-017-0233-z |
Ejemplares similares
-
Predicting Self-Interacting Proteins Using a Recurrent Neural Network
and Protein Evolutionary Information
por: An, Ji-Yong, et al.
Publicado: (2020) -
Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model
por: An, Ji‐Yong, et al.
Publicado: (2016) -
CPIELA: Computational Prediction of Plant Protein–Protein Interactions by Ensemble Learning Approach From Protein Sequences and Evolutionary Information
por: Li, Li-Ping, et al.
Publicado: (2022) -
Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information
por: Biswas, Ashis Kumer, et al.
Publicado: (2010) -
Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix
por: An, Ji-Yong, et al.
Publicado: (2016)