Cargando…

BMP-7 suppresses excessive scar formation by activating the BMP-7/Smad1/5/8 signaling pathway

Scarring is the inevitable consequence of wound repair, which may cause significant physical and mental pain to patients when excessive. Bone morphogenetic protein-7 (BMP-7) has been proved to inhibit TGF-β-induced fibrosis in various tissues including dermal papilla cells. However, the effect of BM...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jingdong, Lin, Quan, Shao, Ying, Rong, Li, Zhang, Duo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561965/
https://www.ncbi.nlm.nih.gov/pubmed/28627680
http://dx.doi.org/10.3892/mmr.2017.6779
Descripción
Sumario:Scarring is the inevitable consequence of wound repair, which may cause significant physical and mental pain to patients when excessive. Bone morphogenetic protein-7 (BMP-7) has been proved to inhibit TGF-β-induced fibrosis in various tissues including dermal papilla cells. However, the effect of BMP-7 on hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, has not been determined. To overcome this problem, the present study established a mouse model of thermal injury to investigate the inhibitory effects of BMP-7 on scar formation. The histological analysis of scar tissues was performed by H&E and Masson's trichrome staining. Western blot assay was used to determine the level changes of related proteins and TUNEL assay was performed to assess the apoptosis of scar tissues. The results demonstrated that BMP-7 promoted wound healing and inhibited scar formation when compared with untreated mice. Collagen deposition and the expression of fibrotic proteins were suppressed in the scar tissues of mice treated with BMP-7. In addition, BMP-7 induced fibroblast apoptosis in scar tissues. Furthermore, activation of the BMP-7/Smad1/5/8 signaling pathway may have been involved in the inhibitory effects of BMP-7 on scar formation. In conclusion, the results of the present study indicate that BMP-7 may inhibit excessive scar formation via activation of the BMP-7/Smad1/5/8 signaling pathway. The results present a potential alternative therapeutic strategy for the treatment of hypertrophic scarring.