Cargando…
Dopamine attenuates ethanol-induced neuroapoptosis in the developing rat retina via the cAMP/PKA pathway
Apoptosis has been identified as the primary cause of fetal alcohol spectrum disorder (FASD), and the development of methods to prevent and treat FASD have been based on the mechanisms of alcohol-induced apoptosis. The present study aimed to explore the effects of dopamine on alcohol-induced neurona...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561998/ https://www.ncbi.nlm.nih.gov/pubmed/28656313 http://dx.doi.org/10.3892/mmr.2017.6823 |
Sumario: | Apoptosis has been identified as the primary cause of fetal alcohol spectrum disorder (FASD), and the development of methods to prevent and treat FASD have been based on the mechanisms of alcohol-induced apoptosis. The present study aimed to explore the effects of dopamine on alcohol-induced neuronal apoptosis using whole-mount cultures of rat retinas (postnatal day 7). Retinas were initially incubated with ethanol (100, 200 or 500 mM), and in subsequent analyses retinas were co-incubated with ethanol (200 mM) and dopamine (10 µM). In addition, several antagonists and inhibitors were used, including a D1 dopamine receptor (D1R) antagonist (SCH23390; 10 µM), a D2R antagonist (raclopride; 40 µM), an adenosine A2A receptor (AA2AR) antagonist (SCH58261; 100 nM), an adenylyl cyclase (AC) inhibitor (SQ22536; 100 µM) and a PKA inhibitor (H-89; 1 µM). The results demonstrated that exposure increased neuroapoptosis in the retinal ganglion cell layer (GCL) in a dose-dependent manner. Dopamine treatment significantly attenuated ethanol-induced neuronal apoptosis. D1R, D2R and AA2AR antagonists partially inhibited the protective effects of dopamine against ethanol-induced apoptosis; similar results were observed with AC and PKA inhibitor treatments. In summary, the present study demonstrated that dopamine treatment may be able to attenuate alcohol-induced neuroapoptosis in the developing rat retina by activating D1R, D2R and AA2AR, and by upregulating cyclic AMP/protein kinase A signaling. |
---|