Cargando…

Centromere protein U is a potential target for gene therapy of human bladder cancer

To investigate the role of centromere protein U (CENPU) in human bladder cancer (BCa), CENPU gene expression was evaluated in human BCa tissues. We used real-time quantitative PCR (qPCR) and found that CENPU gene expression in human BCa tissues was higher compared to that observed in cancer-adjacent...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sheng, Liu, Beibei, Zhang, Jiajun, Sun, Wei, Dai, Changyuan, Sun, Wenyan, Li, Qingwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562008/
https://www.ncbi.nlm.nih.gov/pubmed/28677729
http://dx.doi.org/10.3892/or.2017.5769
Descripción
Sumario:To investigate the role of centromere protein U (CENPU) in human bladder cancer (BCa), CENPU gene expression was evaluated in human BCa tissues. We used real-time quantitative PCR (qPCR) and found that CENPU gene expression in human BCa tissues was higher compared to that observed in cancer-adjacent normal tissues. High CENPU expression was found to be strongly correlated with tumor size and TNM stage. Kaplan-Meier survival analysis indicated that high CENPU levels were associated with reduced survival. We used a lentivirus to silence endogenous CENPU gene expression in the BCa T24 cell line. CENPU knockdown was confirmed by qPCR. Cellomic imaging and BrdU assays showed that cell proliferation was significantly reduced in the CENPU-silenced cells compared to that noted in the control cells. Flow cytometry revealed that in the CENPU-silenced cells the cell cycle was arrested at the G1 phase relative to that in the control cells. In addition, apoptosis was significantly increased in the CENPU-silenced cells. Giemsa staining showed that CENPU-silenced cells, compared to control cells, displayed a significantly lower number of cell colonies. The genome-wide effect of CENPU knockdown showed that a total of 1,274 differentially expressed genes was found, including 809 downregulated genes and 465 upregulated genes. Network analysis by Ingenuity Pathway Analysis (IPA) resulted in 25 distinct signaling pathways, including the top-ranked network: ‘Cellular compromise, organismal injury and abnormalities, skeletal and muscular disorders’. In-depth IPA analysis revealed that CENPU was associated with the HMGB1 signaling pathway. qPCR and western blot analysis demonstrated that in the HMGB1 signaling pathway, CENPU knockdown downregulated expression levels of ILB, CXCL8, RAC1 and IL1A. In conclusion, our data may provide a potential pathway signature for therapeutic targets with which to treat BCa.