Cargando…
Modeling osteosarcoma progression by measuring the connectivity dynamics using an inference of multiple differential modules algorithm
Understanding the dynamic changes in connectivity of molecular pathways is important for determining disease prognosis. Thus, the current study used an inference of multiple differential modules (iMDM) algorithm to identify the connectivity changes of sub-network to predict the progression of osteos...
Autores principales: | Liu, Bin, Zhang, Zhi, Dai, E-Nuo, Tian, Jia-Xin, Xin, Jiang-Ze, Xu, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562023/ https://www.ncbi.nlm.nih.gov/pubmed/28586048 http://dx.doi.org/10.3892/mmr.2017.6703 |
Ejemplares similares
-
Personalized Identification of Differentially Expressed Modules in Osteosarcoma
por: Liu, Xiaozhou, et al.
Publicado: (2017) -
Dynamical differential networks and modules inferring disrupted genes associated with the progression of Alzheimer's disease
por: Wang, Zhengling, et al.
Publicado: (2017) -
Anti-tumoral potential of MDA19 in human osteosarcoma via suppressing PI3K/Akt/mTOR signaling pathway
por: Liu, Bin, et al.
Publicado: (2018) -
Algorithms of causal inference for the analysis of effective connectivity among brain regions
por: Chicharro, Daniel, et al.
Publicado: (2014) -
Inferring neural connectivity from multiple spike trains
por: Kim, Won Sup, et al.
Publicado: (2007)