Cargando…
A Normalization-Free and Nonparametric Method Sharpens Large-Scale Transcriptome Analysis and Reveals Common Gene Alteration Patterns in Cancers
Heterogeneity in transcriptional data hampers the identification of differentially expressed genes (DEGs) and understanding of cancer, essentially because current methods rely on cross-sample normalization and/or distribution assumption—both sensitive to heterogeneous values. Here, we developed a ne...
Autores principales: | Li, Qi-Gang, He, Yong-Han, Wu, Huan, Yang, Cui-Ping, Pu, Shao-Yan, Fan, Song-Qing, Jiang, Li-Ping, Shen, Qiu-Shuo, Wang, Xiao-Xiong, Chen, Xiao-Qiong, Yu, Qin, Li, Ying, Sun, Chang, Wang, Xiangting, Zhou, Jumin, Li, Hai-Peng, Chen, Yong-Bin, Kong, Qing-Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562223/ https://www.ncbi.nlm.nih.gov/pubmed/28824723 http://dx.doi.org/10.7150/thno.19425 |
Ejemplares similares
-
The asymptotic normality of internal estimator for nonparametric regression
por: Li, Penghua, et al.
Publicado: (2018) -
One Spatio-Temporal Sharpening Attention Mechanism for Light-Weight YOLO Models Based on Sharpening Spatial Attention
por: Xue, Mengfan, et al.
Publicado: (2021) -
Landscape reveals critical network structures for sharpening gene expression boundaries
por: Li, Chunhe, et al.
Publicado: (2018) -
Nonparametric Risk and Nonparametric Odds in Quantitative Genetic Association Studies
por: Zhang, Wei, et al.
Publicado: (2015) -
Re-Sharpening Files
por: Werdermrnn, M.
Publicado: (1881)