Cargando…
Scene text detection via extremal region based double threshold convolutional network classification
In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall...
Autores principales: | Zhu, Wei, Lou, Jing, Chen, Longtao, Xia, Qingyuan, Ren, Mingwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562312/ https://www.ncbi.nlm.nih.gov/pubmed/28820891 http://dx.doi.org/10.1371/journal.pone.0182227 |
Ejemplares similares
-
Irregular Scene Text Detection Based on a Graph Convolutional Network
por: Zhang, Shiyu, et al.
Publicado: (2023) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Explainable Connectionist-Temporal-Classification-Based Scene Text Recognition
por: Buoy, Rina, et al.
Publicado: (2023) -
Sunflower seeds classification based on sparse convolutional neural networks in multi-objective scene
por: Jin, Xiaowei, et al.
Publicado: (2022) -
TextConvoNet: a convolutional neural network based architecture for text classification
por: Soni, Sanskar, et al.
Publicado: (2022)