Cargando…
Developing and Applying the Propensity Score to Make Causal Inferences: Variable Selection and Stratification
This Monte Carlo simulation examined the effects of variable selection (combinations of confounders with four patterns of relationships to outcome and assignment to treatment) and number of strata (5, 10, or 20) in propensity score analyses. The focus was on how the variations affected the average e...
Autores principales: | Adelson, Jill L., McCoach, D. B., Rogers, H. J., Adelson, Jonathan A., Sauer, Timothy M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562725/ https://www.ncbi.nlm.nih.gov/pubmed/28861028 http://dx.doi.org/10.3389/fpsyg.2017.01413 |
Ejemplares similares
-
Using Time-Varying Covariates in Multilevel Growth Models
por: McCoach, D. Betsy, et al.
Publicado: (2010) -
Using Propensity Scores for Causal Inference: Pitfalls and Tips
por: Shiba, Koichiro, et al.
Publicado: (2021) -
Applied comparison of large‐scale propensity score matching and cardinality matching for causal inference in observational research
por: Fortin, Stephen P., et al.
Publicado: (2021) -
Commentary: Propensity score methods, causal inference, and hazard ratios
por: Andrei, Adin-Cristian
Publicado: (2021) -
Correction to: Applied comparison of large-scale propensity score matching and cardinality matching for causal inference in observational research
por: Fortin, Stephen P., et al.
Publicado: (2021)