Cargando…
Machine learning quantum phases of matter beyond the fermion sign problem
State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion systems suc...
Autores principales: | Broecker, Peter, Carrasquilla, Juan, Melko, Roger G., Trebst, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562897/ https://www.ncbi.nlm.nih.gov/pubmed/28821785 http://dx.doi.org/10.1038/s41598-017-09098-0 |
Ejemplares similares
-
Commercial applications of quantum computing
por: Bova, Francesco, et al.
Publicado: (2021) -
Quantum machine learning beyond kernel methods
por: Jerbi, Sofiene, et al.
Publicado: (2023) -
Quantum and Fermion differential geometry
por: Hermann, Robert
Publicado: (1977) -
The fermion generations problem in the GUST in the free world-sheet fermion formulation
por: Maslikov, A A, et al.
Publicado: (1994) -
A practical introduction to quantum computing: from qubits to quantum machine learning and beyond
por: Fernandez-Combarro Alvarez, Elias
Publicado: (2020)