Cargando…

MRI Image Processing Based on Fractal Analysis

BACKGROUND: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose....

Descripción completa

Detalles Bibliográficos
Autores principales: Marusina, Mariya Y, Mochalina, Alexandra P, Frolova, Ekaterina P, Satikov, Valentin I, Barchuk, Anton A, Kuznetcov, Vladimir I, Gaidukov, Vadim S, Tarakanov, Segrey A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: West Asia Organization for Cancer Prevention 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563119/
https://www.ncbi.nlm.nih.gov/pubmed/28240009
http://dx.doi.org/10.22034/APJCP.2017.18.1.51
_version_ 1783258080129056768
author Marusina, Mariya Y
Mochalina, Alexandra P
Frolova, Ekaterina P
Satikov, Valentin I
Barchuk, Anton A
Kuznetcov, Vladimir I
Gaidukov, Vadim S
Tarakanov, Segrey A
author_facet Marusina, Mariya Y
Mochalina, Alexandra P
Frolova, Ekaterina P
Satikov, Valentin I
Barchuk, Anton A
Kuznetcov, Vladimir I
Gaidukov, Vadim S
Tarakanov, Segrey A
author_sort Marusina, Mariya Y
collection PubMed
description BACKGROUND: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose. MATERIALS AND METHODS: In this study, we examined magnetic resonance (MR) images of healthy livers and livers containing metastases from colorectal cancer. The fractal dimension and the Hurst exponent were chosen as diagnostic features for tomographic imaging using Image J software package for image processings FracLac for applied for fractal analysis with a 120x150 pixel area. Calculations of the fractal dimensions of pathological and healthy tissue samples were performed using the box-counting method. RESULTS: In pathological cases (foci formation), the Hurst exponent was less than 0.5 (the region of unstable statistical characteristics). For healthy tissue, the Hurst index is greater than 0.5 (the zone of stable characteristics). CONCLUSIONS: The study indicated the possibility of employing fractal rapid analysis for the detection of focal lesions of the liver. The Hurst exponent can be used as an important diagnostic characteristic for analysis of medical images.
format Online
Article
Text
id pubmed-5563119
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher West Asia Organization for Cancer Prevention
record_format MEDLINE/PubMed
spelling pubmed-55631192017-08-28 MRI Image Processing Based on Fractal Analysis Marusina, Mariya Y Mochalina, Alexandra P Frolova, Ekaterina P Satikov, Valentin I Barchuk, Anton A Kuznetcov, Vladimir I Gaidukov, Vadim S Tarakanov, Segrey A Asian Pac J Cancer Prev Research Article BACKGROUND: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose. MATERIALS AND METHODS: In this study, we examined magnetic resonance (MR) images of healthy livers and livers containing metastases from colorectal cancer. The fractal dimension and the Hurst exponent were chosen as diagnostic features for tomographic imaging using Image J software package for image processings FracLac for applied for fractal analysis with a 120x150 pixel area. Calculations of the fractal dimensions of pathological and healthy tissue samples were performed using the box-counting method. RESULTS: In pathological cases (foci formation), the Hurst exponent was less than 0.5 (the region of unstable statistical characteristics). For healthy tissue, the Hurst index is greater than 0.5 (the zone of stable characteristics). CONCLUSIONS: The study indicated the possibility of employing fractal rapid analysis for the detection of focal lesions of the liver. The Hurst exponent can be used as an important diagnostic characteristic for analysis of medical images. West Asia Organization for Cancer Prevention 2017 /pmc/articles/PMC5563119/ /pubmed/28240009 http://dx.doi.org/10.22034/APJCP.2017.18.1.51 Text en Copyright: © Asian Pacific Journal of Cancer Prevention http://creativecommons.org/licenses/BY-SA/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
spellingShingle Research Article
Marusina, Mariya Y
Mochalina, Alexandra P
Frolova, Ekaterina P
Satikov, Valentin I
Barchuk, Anton A
Kuznetcov, Vladimir I
Gaidukov, Vadim S
Tarakanov, Segrey A
MRI Image Processing Based on Fractal Analysis
title MRI Image Processing Based on Fractal Analysis
title_full MRI Image Processing Based on Fractal Analysis
title_fullStr MRI Image Processing Based on Fractal Analysis
title_full_unstemmed MRI Image Processing Based on Fractal Analysis
title_short MRI Image Processing Based on Fractal Analysis
title_sort mri image processing based on fractal analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563119/
https://www.ncbi.nlm.nih.gov/pubmed/28240009
http://dx.doi.org/10.22034/APJCP.2017.18.1.51
work_keys_str_mv AT marusinamariyay mriimageprocessingbasedonfractalanalysis
AT mochalinaalexandrap mriimageprocessingbasedonfractalanalysis
AT frolovaekaterinap mriimageprocessingbasedonfractalanalysis
AT satikovvalentini mriimageprocessingbasedonfractalanalysis
AT barchukantona mriimageprocessingbasedonfractalanalysis
AT kuznetcovvladimiri mriimageprocessingbasedonfractalanalysis
AT gaidukovvadims mriimageprocessingbasedonfractalanalysis
AT tarakanovsegreya mriimageprocessingbasedonfractalanalysis