Cargando…
Machine learning–XGBoost analysis of language networks to classify patients with epilepsy
Our goal was to apply a statistical approach to allow the identification of atypical language patterns and to differentiate patients with epilepsy from healthy subjects, based on their cerebral activity, as assessed by functional MRI (fMRI). Patients with focal epilepsy show reorganization or plasti...
Autores principales: | Torlay, L., Perrone-Bertolotti, M., Thomas, E., Baciu, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563301/ https://www.ncbi.nlm.nih.gov/pubmed/28434153 http://dx.doi.org/10.1007/s40708-017-0065-7 |
Ejemplares similares
-
Hubs disruption in mesial temporal lobe epilepsy. A resting‐state fMRI study on a language‐and‐memory network
por: Roger, Elise, et al.
Publicado: (2019) -
Rehabilitation of verbal memory by means of preserved nonverbal memory abilities after epilepsy surgery
por: Mosca, C., et al.
Publicado: (2014) -
XGSleeve: detecting sleeve incidents in well completion by using XGBoost classifier
por: Somi, Sahand, et al.
Publicado: (2023) -
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
por: Ge, Jiankun, et al.
Publicado: (2022)