Cargando…

Mass Spectrometry and Luminogenic-based Approaches to Characterize Phase I Metabolic Competency of In Vitro Cell Cultures

Xenobiotic metabolizing enzymes play a key function in the biotransformation of medicines and toxicants by adding functional groups that increase solubility and facilitate excretion. On some occasions those structural modifications lead to the formation of new toxic products. In order to reduce anim...

Descripción completa

Detalles Bibliográficos
Autores principales: Baxter, Andrew, Minet, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564436/
https://www.ncbi.nlm.nih.gov/pubmed/28448041
http://dx.doi.org/10.3791/55502
Descripción
Sumario:Xenobiotic metabolizing enzymes play a key function in the biotransformation of medicines and toxicants by adding functional groups that increase solubility and facilitate excretion. On some occasions those structural modifications lead to the formation of new toxic products. In order to reduce animal testing, chemical risk can be assessed using metabolically competent cells. The expression of metabolic enzymes, however, is not stable over time in many in vitro primary culture systems and is often partial or absent in cell lines. Therefore, the study of medicines, additives, and environmental pollutants metabolism in vitro should ideally be conducted in cell systems where metabolic activity has been characterized. We explain here an approach to measure the activity of a class of metabolic enzymes (Human Phase I) in 2D cell lines and primary 3D cultures using chemical probes and their metabolic products quantifiable by UPLC mass spectrometry and luminometry. The method can be implemented to test the metabolic activity in cell lines and primary cells derived from a variety of tissues.