Cargando…
Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer
PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564528/ https://www.ncbi.nlm.nih.gov/pubmed/28423353 http://dx.doi.org/10.18632/oncotarget.16776 |
_version_ | 1783258249080864768 |
---|---|
author | Taniguchi, Hiroaki Hoshino, Daisuke Moriya, Chiharu Zembutsu, Hitoshi Nishiyama, Nobuhiro Yamamoto, Hiroyuki Kataoka, Kazunori Imai, Kohzoh |
author_facet | Taniguchi, Hiroaki Hoshino, Daisuke Moriya, Chiharu Zembutsu, Hitoshi Nishiyama, Nobuhiro Yamamoto, Hiroyuki Kataoka, Kazunori Imai, Kohzoh |
author_sort | Taniguchi, Hiroaki |
collection | PubMed |
description | PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells. |
format | Online Article Text |
id | pubmed-5564528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-55645282017-08-23 Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer Taniguchi, Hiroaki Hoshino, Daisuke Moriya, Chiharu Zembutsu, Hitoshi Nishiyama, Nobuhiro Yamamoto, Hiroyuki Kataoka, Kazunori Imai, Kohzoh Oncotarget Research Paper PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells. Impact Journals LLC 2017-04-01 /pmc/articles/PMC5564528/ /pubmed/28423353 http://dx.doi.org/10.18632/oncotarget.16776 Text en Copyright: © 2017 Taniguchi et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Taniguchi, Hiroaki Hoshino, Daisuke Moriya, Chiharu Zembutsu, Hitoshi Nishiyama, Nobuhiro Yamamoto, Hiroyuki Kataoka, Kazunori Imai, Kohzoh Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title | Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title_full | Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title_fullStr | Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title_full_unstemmed | Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title_short | Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
title_sort | silencing prdm14 expression by an innovative rnai therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564528/ https://www.ncbi.nlm.nih.gov/pubmed/28423353 http://dx.doi.org/10.18632/oncotarget.16776 |
work_keys_str_mv | AT taniguchihiroaki silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT hoshinodaisuke silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT moriyachiharu silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT zembutsuhitoshi silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT nishiyamanobuhiro silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT yamamotohiroyuki silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT kataokakazunori silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer AT imaikohzoh silencingprdm14expressionbyaninnovativernaitherapyinhibitsstemnesstumorigenicityandmetastasisofbreastcancer |