Cargando…

Tissue and serum lipidome shows altered lipid composition with diagnostic potential in mycosis fungoides

Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR–MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chenchen, Zhou, Dan, Luo, Yixin, Guo, Shuai, Wang, Tao, Liu, Jie, Liu, Yuehua, Li, Zhili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564624/
https://www.ncbi.nlm.nih.gov/pubmed/28624795
http://dx.doi.org/10.18632/oncotarget.18228
Descripción
Sumario:Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR–MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22 from MF patients and 22 from control subjects). Multivariate statistical analysis of the mass spectral data showed that MF tissues had altered levels of seven lipids and MF sera had altered levels of twelve. Among these, six phosphotidylcholines, PC (34:2), PC (34:1), PC (36:3), PC (36:2), PC (32:0), and PC (38:4) and one sphingomyelin, SM (16:0) were altered in both MF tissues and sera. PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues. We have thus identified multiple lipids that are altered in MF tissues and sera. This suggests serological and tissue lipidomic profiling could be an effective approach to screening for diagnostic biomarkers of MF.