Cargando…

Carcinogenicity of chromium and chemoprevention: a brief update

Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromiu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yafei, Su, Hong, Gu, Yuanliang, Song, Xin, Zhao, Jinshun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565385/
https://www.ncbi.nlm.nih.gov/pubmed/28860815
http://dx.doi.org/10.2147/OTT.S139262
Descripción
Sumario:Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants.