Cargando…

Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation

ABSTRACT: Loss of sagittal alignment and balance in adult spinal deformity can cause severe pain, disability and progressive neurological deficit. When conservative treatment has failed, spinal fusion using rigid instrumentation is currently the salvage treatment to stop further curve progression. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacobs, Eva, Roth, Alex K., Arts, Jacobus J., van Rhijn, Lodewijk W., Willems, Paul C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565658/
https://www.ncbi.nlm.nih.gov/pubmed/28828753
http://dx.doi.org/10.1007/s10856-017-5953-0
_version_ 1783258425023528960
author Jacobs, Eva
Roth, Alex K.
Arts, Jacobus J.
van Rhijn, Lodewijk W.
Willems, Paul C.
author_facet Jacobs, Eva
Roth, Alex K.
Arts, Jacobus J.
van Rhijn, Lodewijk W.
Willems, Paul C.
author_sort Jacobs, Eva
collection PubMed
description ABSTRACT: Loss of sagittal alignment and balance in adult spinal deformity can cause severe pain, disability and progressive neurological deficit. When conservative treatment has failed, spinal fusion using rigid instrumentation is currently the salvage treatment to stop further curve progression. However, fusion surgery is associated with high revision rates due to instrumentation failure and proximal junctional failure, especially if patients also suffer from osteoporosis. To address these drawbacks, a less rigid rod construct is proposed, which is hypothesized to provide a more gradual transition of force and load distribution over spinal segments in comparison to stiff titanium rods. In this study, the effect of variation in rod stiffness on the intradiscal pressure (IDP) of fixed spinal segments during flexion-compression loading was assessed. An ex vivo multisegment (porcine) flexion-compression spine test comparing rigid titanium rods with more flexible polycarbonate-urethane (PCU) rods was used. An increase in peak IDP was found for both the titanium and PCU instrumentation groups as compared to the uninstrumented controls. The peak IDP for the spines instrumented with the PCU rods was significantly lower in comparison to the titanium instrumentation group. These results demonstrated the differences in mechanical load transfer characteristics between PCU and titanium rod constructs when subjected to flexion-compression loading. The concept of stabilization with a less rigid rod may be an alternative to fusion with rigid instrumentation, with the aim of decreasing mechanical stress on the instrumented segments and the possible benefit of a decrease in the incidence of screw pullout. GRAPHICAL ABSTRACT: [Image: see text]
format Online
Article
Text
id pubmed-5565658
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-55656582017-09-06 Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation Jacobs, Eva Roth, Alex K. Arts, Jacobus J. van Rhijn, Lodewijk W. Willems, Paul C. J Mater Sci Mater Med Clinical Applications of Biomaterials ABSTRACT: Loss of sagittal alignment and balance in adult spinal deformity can cause severe pain, disability and progressive neurological deficit. When conservative treatment has failed, spinal fusion using rigid instrumentation is currently the salvage treatment to stop further curve progression. However, fusion surgery is associated with high revision rates due to instrumentation failure and proximal junctional failure, especially if patients also suffer from osteoporosis. To address these drawbacks, a less rigid rod construct is proposed, which is hypothesized to provide a more gradual transition of force and load distribution over spinal segments in comparison to stiff titanium rods. In this study, the effect of variation in rod stiffness on the intradiscal pressure (IDP) of fixed spinal segments during flexion-compression loading was assessed. An ex vivo multisegment (porcine) flexion-compression spine test comparing rigid titanium rods with more flexible polycarbonate-urethane (PCU) rods was used. An increase in peak IDP was found for both the titanium and PCU instrumentation groups as compared to the uninstrumented controls. The peak IDP for the spines instrumented with the PCU rods was significantly lower in comparison to the titanium instrumentation group. These results demonstrated the differences in mechanical load transfer characteristics between PCU and titanium rod constructs when subjected to flexion-compression loading. The concept of stabilization with a less rigid rod may be an alternative to fusion with rigid instrumentation, with the aim of decreasing mechanical stress on the instrumented segments and the possible benefit of a decrease in the incidence of screw pullout. GRAPHICAL ABSTRACT: [Image: see text] Springer US 2017-08-21 2017 /pmc/articles/PMC5565658/ /pubmed/28828753 http://dx.doi.org/10.1007/s10856-017-5953-0 Text en © The Author(s) 2017 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Clinical Applications of Biomaterials
Jacobs, Eva
Roth, Alex K.
Arts, Jacobus J.
van Rhijn, Lodewijk W.
Willems, Paul C.
Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title_full Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title_fullStr Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title_full_unstemmed Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title_short Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
title_sort reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation
topic Clinical Applications of Biomaterials
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565658/
https://www.ncbi.nlm.nih.gov/pubmed/28828753
http://dx.doi.org/10.1007/s10856-017-5953-0
work_keys_str_mv AT jacobseva reductionofintradiscalpressurebytheuseofpolycarbonateurethanerodsascomparedtotitaniumrodsinposteriorthoracolumbarspinalfixation
AT rothalexk reductionofintradiscalpressurebytheuseofpolycarbonateurethanerodsascomparedtotitaniumrodsinposteriorthoracolumbarspinalfixation
AT artsjacobusj reductionofintradiscalpressurebytheuseofpolycarbonateurethanerodsascomparedtotitaniumrodsinposteriorthoracolumbarspinalfixation
AT vanrhijnlodewijkw reductionofintradiscalpressurebytheuseofpolycarbonateurethanerodsascomparedtotitaniumrodsinposteriorthoracolumbarspinalfixation
AT willemspaulc reductionofintradiscalpressurebytheuseofpolycarbonateurethanerodsascomparedtotitaniumrodsinposteriorthoracolumbarspinalfixation