Cargando…
Decoding Noncoding RNAs: Role of MicroRNAs and Long Noncoding RNAs in Ocular Neovascularization
Ocular neovascularization is a pathological sequel of multiple eye diseases. Based on the anatomical site into which the abnormal neovessels grow, ocular neovascularization can be categorized into corneal neovascularization, choroidal neovascularization, and retinal neovascularization. Each category...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566112/ https://www.ncbi.nlm.nih.gov/pubmed/28839470 http://dx.doi.org/10.7150/thno.19646 |
Sumario: | Ocular neovascularization is a pathological sequel of multiple eye diseases. Based on the anatomical site into which the abnormal neovessels grow, ocular neovascularization can be categorized into corneal neovascularization, choroidal neovascularization, and retinal neovascularization. Each category is intractable, and may lead to blindness if not appropriately treated. However, the current therapeutic modalities, including laser photocoagulation, vitrectomy surgery, and anti-VEGF drugs, raise concerns due to limited efficacy, damage on retinal parenchyma and vasculature, and the patients' unresponsiveness to the treatments. Therefore, the in-depth study on pathogenesis of and the search for novel therapeutic targets to the ocular neovascularization are needed. During the last 10 years or so, a large number of literatures have emerged indicating a critical role of noncoding RNAs, particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), in the pathogenesis and regulation of the ocular neovascularization. This review summarizes the current understanding of the biosynthesis and functions of the miRNAs and lncRNAs, the regulation of the miRNAs and lncRNAs in neovascular eye diseases, as well as the roles of these noncoding RNAs in the disease models of ocular neovascularization, in the hope that it could provide clues for the pathogenesis of and molecular targets to the ocular neovascularization. |
---|