Cargando…

A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery

Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a vers...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ping, Li, Jing, Zhao, Zhe, Fang, Zhengsong, Yang, Meijia, Yuan, Zhongke, Zhang, You, Zhang, Qiang, Hong, Wei, Chen, Xudong, Yu, Dingshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566233/
https://www.ncbi.nlm.nih.gov/pubmed/28852617
http://dx.doi.org/10.1002/advs.201700003
_version_ 1783258514955698176
author Li, Ping
Li, Jing
Zhao, Zhe
Fang, Zhengsong
Yang, Meijia
Yuan, Zhongke
Zhang, You
Zhang, Qiang
Hong, Wei
Chen, Xudong
Yu, Dingshan
author_facet Li, Ping
Li, Jing
Zhao, Zhe
Fang, Zhengsong
Yang, Meijia
Yuan, Zhongke
Zhang, You
Zhang, Qiang
Hong, Wei
Chen, Xudong
Yu, Dingshan
author_sort Li, Ping
collection PubMed
description Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a versatile host. As a proof of concept, the 1D metallic scaffold supported‐MnO(2) fiber electrode is demonstrated. The proposed “sheath” design not only affords large electrode surface area with ordered macropores for large electrolyte‐ion accessibility and high electroactive material loading, but also renders interconnected porous metallic skeleton for efficient electronic and ionic transport, while the metallic “core” functions as an extra current collector to promote long‐distance electron transport and electron collection. Benefiting from all these merits, the optimized fiber electrode yields unprecedented specific areal capacitance of 1303.6 mF cm(−2) (1278 F g(−1) based on MnO(2), approaching the theoretical value of 1370 F g(−1)) in liquid KOH and 847.22 mF cm(−2) in polyvinyl alcohol (PVA)/KOH gel electrolyte, 2–350 times of previously reported fiber electrodes. The solid‐state fiber micro‐pseudocapacitors simultaneously achieve remarkable areal energy and power densities of 18.83 µWh cm(−2) and 16.33 mW cm(−2), greatly exceeding the existing symmetric fiber supercapacitors, together with long cycle life and high rate capability.
format Online
Article
Text
id pubmed-5566233
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-55662332017-08-29 A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery Li, Ping Li, Jing Zhao, Zhe Fang, Zhengsong Yang, Meijia Yuan, Zhongke Zhang, You Zhang, Qiang Hong, Wei Chen, Xudong Yu, Dingshan Adv Sci (Weinh) Communications Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a versatile host. As a proof of concept, the 1D metallic scaffold supported‐MnO(2) fiber electrode is demonstrated. The proposed “sheath” design not only affords large electrode surface area with ordered macropores for large electrolyte‐ion accessibility and high electroactive material loading, but also renders interconnected porous metallic skeleton for efficient electronic and ionic transport, while the metallic “core” functions as an extra current collector to promote long‐distance electron transport and electron collection. Benefiting from all these merits, the optimized fiber electrode yields unprecedented specific areal capacitance of 1303.6 mF cm(−2) (1278 F g(−1) based on MnO(2), approaching the theoretical value of 1370 F g(−1)) in liquid KOH and 847.22 mF cm(−2) in polyvinyl alcohol (PVA)/KOH gel electrolyte, 2–350 times of previously reported fiber electrodes. The solid‐state fiber micro‐pseudocapacitors simultaneously achieve remarkable areal energy and power densities of 18.83 µWh cm(−2) and 16.33 mW cm(−2), greatly exceeding the existing symmetric fiber supercapacitors, together with long cycle life and high rate capability. John Wiley and Sons Inc. 2017-03-03 /pmc/articles/PMC5566233/ /pubmed/28852617 http://dx.doi.org/10.1002/advs.201700003 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Li, Ping
Li, Jing
Zhao, Zhe
Fang, Zhengsong
Yang, Meijia
Yuan, Zhongke
Zhang, You
Zhang, Qiang
Hong, Wei
Chen, Xudong
Yu, Dingshan
A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title_full A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title_fullStr A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title_full_unstemmed A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title_short A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
title_sort general electrode design strategy for flexible fiber micro‐pseudocapacitors combining ultrahigh energy and power delivery
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566233/
https://www.ncbi.nlm.nih.gov/pubmed/28852617
http://dx.doi.org/10.1002/advs.201700003
work_keys_str_mv AT liping ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT lijing ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhaozhe ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT fangzhengsong ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yangmeijia ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yuanzhongke ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhangyou ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhangqiang ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT hongwei ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT chenxudong ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yudingshan ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT liping generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT lijing generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhaozhe generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT fangzhengsong generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yangmeijia generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yuanzhongke generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhangyou generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT zhangqiang generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT hongwei generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT chenxudong generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery
AT yudingshan generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery