Cargando…
A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a vers...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566233/ https://www.ncbi.nlm.nih.gov/pubmed/28852617 http://dx.doi.org/10.1002/advs.201700003 |
_version_ | 1783258514955698176 |
---|---|
author | Li, Ping Li, Jing Zhao, Zhe Fang, Zhengsong Yang, Meijia Yuan, Zhongke Zhang, You Zhang, Qiang Hong, Wei Chen, Xudong Yu, Dingshan |
author_facet | Li, Ping Li, Jing Zhao, Zhe Fang, Zhengsong Yang, Meijia Yuan, Zhongke Zhang, You Zhang, Qiang Hong, Wei Chen, Xudong Yu, Dingshan |
author_sort | Li, Ping |
collection | PubMed |
description | Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a versatile host. As a proof of concept, the 1D metallic scaffold supported‐MnO(2) fiber electrode is demonstrated. The proposed “sheath” design not only affords large electrode surface area with ordered macropores for large electrolyte‐ion accessibility and high electroactive material loading, but also renders interconnected porous metallic skeleton for efficient electronic and ionic transport, while the metallic “core” functions as an extra current collector to promote long‐distance electron transport and electron collection. Benefiting from all these merits, the optimized fiber electrode yields unprecedented specific areal capacitance of 1303.6 mF cm(−2) (1278 F g(−1) based on MnO(2), approaching the theoretical value of 1370 F g(−1)) in liquid KOH and 847.22 mF cm(−2) in polyvinyl alcohol (PVA)/KOH gel electrolyte, 2–350 times of previously reported fiber electrodes. The solid‐state fiber micro‐pseudocapacitors simultaneously achieve remarkable areal energy and power densities of 18.83 µWh cm(−2) and 16.33 mW cm(−2), greatly exceeding the existing symmetric fiber supercapacitors, together with long cycle life and high rate capability. |
format | Online Article Text |
id | pubmed-5566233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55662332017-08-29 A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery Li, Ping Li, Jing Zhao, Zhe Fang, Zhengsong Yang, Meijia Yuan, Zhongke Zhang, You Zhang, Qiang Hong, Wei Chen, Xudong Yu, Dingshan Adv Sci (Weinh) Communications Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO(2)) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire “sheath–core” metallic scaffold as a versatile host. As a proof of concept, the 1D metallic scaffold supported‐MnO(2) fiber electrode is demonstrated. The proposed “sheath” design not only affords large electrode surface area with ordered macropores for large electrolyte‐ion accessibility and high electroactive material loading, but also renders interconnected porous metallic skeleton for efficient electronic and ionic transport, while the metallic “core” functions as an extra current collector to promote long‐distance electron transport and electron collection. Benefiting from all these merits, the optimized fiber electrode yields unprecedented specific areal capacitance of 1303.6 mF cm(−2) (1278 F g(−1) based on MnO(2), approaching the theoretical value of 1370 F g(−1)) in liquid KOH and 847.22 mF cm(−2) in polyvinyl alcohol (PVA)/KOH gel electrolyte, 2–350 times of previously reported fiber electrodes. The solid‐state fiber micro‐pseudocapacitors simultaneously achieve remarkable areal energy and power densities of 18.83 µWh cm(−2) and 16.33 mW cm(−2), greatly exceeding the existing symmetric fiber supercapacitors, together with long cycle life and high rate capability. John Wiley and Sons Inc. 2017-03-03 /pmc/articles/PMC5566233/ /pubmed/28852617 http://dx.doi.org/10.1002/advs.201700003 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Li, Ping Li, Jing Zhao, Zhe Fang, Zhengsong Yang, Meijia Yuan, Zhongke Zhang, You Zhang, Qiang Hong, Wei Chen, Xudong Yu, Dingshan A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title | A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title_full | A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title_fullStr | A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title_full_unstemmed | A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title_short | A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery |
title_sort | general electrode design strategy for flexible fiber micro‐pseudocapacitors combining ultrahigh energy and power delivery |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566233/ https://www.ncbi.nlm.nih.gov/pubmed/28852617 http://dx.doi.org/10.1002/advs.201700003 |
work_keys_str_mv | AT liping ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT lijing ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhaozhe ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT fangzhengsong ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yangmeijia ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yuanzhongke ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhangyou ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhangqiang ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT hongwei ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT chenxudong ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yudingshan ageneralelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT liping generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT lijing generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhaozhe generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT fangzhengsong generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yangmeijia generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yuanzhongke generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhangyou generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT zhangqiang generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT hongwei generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT chenxudong generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery AT yudingshan generalelectrodedesignstrategyforflexiblefibermicropseudocapacitorscombiningultrahighenergyandpowerdelivery |