Cargando…
Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder
Control of both the regularity of a material ensemble and nanoscale architecture provides unique opportunities to develop novel thermoelectric applications based on 2D materials. As an example, the authors explore the electronic and thermal properties of functionalized graphene nanoribbons (GNRs) in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566246/ https://www.ncbi.nlm.nih.gov/pubmed/28852610 http://dx.doi.org/10.1002/advs.201600467 |
_version_ | 1783258518114009088 |
---|---|
author | Li, Huashan Grossman, Jeffrey C. |
author_facet | Li, Huashan Grossman, Jeffrey C. |
author_sort | Li, Huashan |
collection | PubMed |
description | Control of both the regularity of a material ensemble and nanoscale architecture provides unique opportunities to develop novel thermoelectric applications based on 2D materials. As an example, the authors explore the electronic and thermal properties of functionalized graphene nanoribbons (GNRs) in the single‐sheet and helical architectures using multiscale simulations. The results suggest that appropriate functionalization enables precise tuning of the doping density in a planar donor/acceptor GNR ensemble without the need to introduce an explicit dopant, which is critical to the optimization of power factor. In addition, the self‐interaction between turns of a GNR may induce long‐range disorder along the helical axis, which suppresses the thermal contribution from phonons with long wavelengths, leading to anomalous length independent phonon thermal transport in the quasi‐1D system. |
format | Online Article Text |
id | pubmed-5566246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55662462017-08-29 Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder Li, Huashan Grossman, Jeffrey C. Adv Sci (Weinh) Full Papers Control of both the regularity of a material ensemble and nanoscale architecture provides unique opportunities to develop novel thermoelectric applications based on 2D materials. As an example, the authors explore the electronic and thermal properties of functionalized graphene nanoribbons (GNRs) in the single‐sheet and helical architectures using multiscale simulations. The results suggest that appropriate functionalization enables precise tuning of the doping density in a planar donor/acceptor GNR ensemble without the need to introduce an explicit dopant, which is critical to the optimization of power factor. In addition, the self‐interaction between turns of a GNR may induce long‐range disorder along the helical axis, which suppresses the thermal contribution from phonons with long wavelengths, leading to anomalous length independent phonon thermal transport in the quasi‐1D system. John Wiley and Sons Inc. 2017-03-31 /pmc/articles/PMC5566246/ /pubmed/28852610 http://dx.doi.org/10.1002/advs.201600467 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Li, Huashan Grossman, Jeffrey C. Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title | Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title_full | Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title_fullStr | Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title_full_unstemmed | Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title_short | Graphene Nanoribbon Based Thermoelectrics: Controllable Self‐ Doping and Long‐Range Disorder |
title_sort | graphene nanoribbon based thermoelectrics: controllable self‐ doping and long‐range disorder |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566246/ https://www.ncbi.nlm.nih.gov/pubmed/28852610 http://dx.doi.org/10.1002/advs.201600467 |
work_keys_str_mv | AT lihuashan graphenenanoribbonbasedthermoelectricscontrollableselfdopingandlongrangedisorder AT grossmanjeffreyc graphenenanoribbonbasedthermoelectricscontrollableselfdopingandlongrangedisorder |