Cargando…

Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging

In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 10(6) membranes/cm(2)) of suspended polymer membranes with micrometric size (in the order of few μm(2)) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminesc...

Descripción completa

Detalles Bibliográficos
Autores principales: Polito, Giovanni, Robbiano, Valentina, Cozzi, Chiara, Cacialli, Franco, Barillaro, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566329/
https://www.ncbi.nlm.nih.gov/pubmed/28827776
http://dx.doi.org/10.1038/s41598-017-08278-2
_version_ 1783258528714063872
author Polito, Giovanni
Robbiano, Valentina
Cozzi, Chiara
Cacialli, Franco
Barillaro, Giuseppe
author_facet Polito, Giovanni
Robbiano, Valentina
Cozzi, Chiara
Cacialli, Franco
Barillaro, Giuseppe
author_sort Polito, Giovanni
collection PubMed
description In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 10(6) membranes/cm(2)) of suspended polymer membranes with micrometric size (in the order of few μm(2)) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm(2)) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (μQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications.
format Online
Article
Text
id pubmed-5566329
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55663292017-08-23 Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging Polito, Giovanni Robbiano, Valentina Cozzi, Chiara Cacialli, Franco Barillaro, Giuseppe Sci Rep Article In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 10(6) membranes/cm(2)) of suspended polymer membranes with micrometric size (in the order of few μm(2)) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm(2)) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (μQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications. Nature Publishing Group UK 2017-08-21 /pmc/articles/PMC5566329/ /pubmed/28827776 http://dx.doi.org/10.1038/s41598-017-08278-2 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Polito, Giovanni
Robbiano, Valentina
Cozzi, Chiara
Cacialli, Franco
Barillaro, Giuseppe
Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title_full Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title_fullStr Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title_full_unstemmed Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title_short Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
title_sort template-assisted preparation of micrometric suspended membrane lattices of photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation: application to microtagging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566329/
https://www.ncbi.nlm.nih.gov/pubmed/28827776
http://dx.doi.org/10.1038/s41598-017-08278-2
work_keys_str_mv AT politogiovanni templateassistedpreparationofmicrometricsuspendedmembranelatticesofphotoluminescentandnonphotoluminescentpolymersbycapillaritydrivensolventevaporationapplicationtomicrotagging
AT robbianovalentina templateassistedpreparationofmicrometricsuspendedmembranelatticesofphotoluminescentandnonphotoluminescentpolymersbycapillaritydrivensolventevaporationapplicationtomicrotagging
AT cozzichiara templateassistedpreparationofmicrometricsuspendedmembranelatticesofphotoluminescentandnonphotoluminescentpolymersbycapillaritydrivensolventevaporationapplicationtomicrotagging
AT caciallifranco templateassistedpreparationofmicrometricsuspendedmembranelatticesofphotoluminescentandnonphotoluminescentpolymersbycapillaritydrivensolventevaporationapplicationtomicrotagging
AT barillarogiuseppe templateassistedpreparationofmicrometricsuspendedmembranelatticesofphotoluminescentandnonphotoluminescentpolymersbycapillaritydrivensolventevaporationapplicationtomicrotagging