Cargando…

α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion

BACKGROUND: Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Hsien-Hao, Chen, Liang-Yu, Doong, Ming-Luen, Chang, Shi-Chuan, Chen, Chih-Yen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566386/
https://www.ncbi.nlm.nih.gov/pubmed/28860709
http://dx.doi.org/10.2147/DDDT.S143749
Descripción
Sumario:BACKGROUND: Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. OBJECTIVE: This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. METHODS AND PROCEDURES: We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. RESULTS: ICV injection of O-n-octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h (P<0.01), enhanced non-nutrient semi-liquid gastric emptying (P<0.001), increased the geometric center and running percentage of small intestinal transit (P<0.001), accelerated colonic transit time (P<0.05), and increased fecal pellet output (P<0.01) and total fecal weight (P<0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit (P<0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. CONCLUSION: α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.