Cargando…

One-Pot in Situ Hydrothermal Growth of BiVO(4)/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation

BiVO(4) is ubiquitously known for its potential use as photoanode for PEC-WS due to its well-suited band structure; nevertheless, it suffers from the major drawback of a slow electron hole separation and transportation. We have demonstrated the one-pot synthesis of BiVO(4)/Ag/rGO hybrid photoanodes...

Descripción completa

Detalles Bibliográficos
Autores principales: Patil, Santosh S., Mali, Mukund G., Hassan, Mostafa Afifi, Patil, Deepak R., Kolekar, Sanjay S., Ryu, Sang-Wan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566408/
https://www.ncbi.nlm.nih.gov/pubmed/28827768
http://dx.doi.org/10.1038/s41598-017-08912-z
Descripción
Sumario:BiVO(4) is ubiquitously known for its potential use as photoanode for PEC-WS due to its well-suited band structure; nevertheless, it suffers from the major drawback of a slow electron hole separation and transportation. We have demonstrated the one-pot synthesis of BiVO(4)/Ag/rGO hybrid photoanodes on a fluorine-doped tin oxide (FTO)-coated glass substrate using a facile and cost-effective hydrothermal method. The structural, morphological, and optical properties were extensively examined, confirming the formation of hybrid heterostructures. Ternary BiVO(4)/Ag/rGO hybrid photoanode electrode showed enhanced PEC performance with photocurrent densities (J (ph)) of ~2.25 and 5 mA/cm(2) for the water and sulfate oxidation, respectively. In addition, the BiVO(4)/Ag/rGO hybrid photoanode can convert up to 3.5% of the illuminating light into photocurrent, and exhibits a 0.9% solar-to-hydrogen conversion efficiency. Similarly, the photocatalytic methylene blue (MB) degradation afforded the highest degradation rate constant value (k = 1.03 × 10(−2) min(−1)) for the BiVO(4)/Ag/rGO hybrid sample. It is noteworthy that the PEC/photocatalytic performance of BiVO(4)/Ag/rGO hybrid architectures is markedly more significant than that of the pristine BiVO(4) sample. The enhanced PEC/photocatalytic performance of the synthesized BiVO(4)/Ag/rGO hybrid sample can be attributed to the combined effects of strong visible light absorption, improved charge separation-transportation and excellent surface properties.