Cargando…
Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain
Current treatments for chronic pain, such as inflammatory pain, neuropathic pain, and cancer pain are insufficient and cause severe side effects. Mounting evidence suggests that neuroinflammation in the peripheral and central nervous system (PNS and CNS) plays a pivotal role in the genesis and maint...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567062/ https://www.ncbi.nlm.nih.gov/pubmed/28871264 http://dx.doi.org/10.3389/fimmu.2017.01014 |
_version_ | 1783258651756068864 |
---|---|
author | Huh, Yul Ji, Ru-Rong Chen, Gang |
author_facet | Huh, Yul Ji, Ru-Rong Chen, Gang |
author_sort | Huh, Yul |
collection | PubMed |
description | Current treatments for chronic pain, such as inflammatory pain, neuropathic pain, and cancer pain are insufficient and cause severe side effects. Mounting evidence suggests that neuroinflammation in the peripheral and central nervous system (PNS and CNS) plays a pivotal role in the genesis and maintenance of chronic pain. Characteristic features of neuroinflammation in chronic pain conditions include infiltration of immune cells into the PNS [e.g., the sciatic nerve and dorsal root ganglion (DRG)], activation of glial cells such as microglia and astrocytes in the CNS (spinal cord and brain), and production and secretion of pro-inflammatory cytokines and chemokines [TNF, interleukin (IL)-1β, IL-6, CCL2, and CXCL1]. Recent studies suggest that bone marrow stem cells or bone marrow stromal cells (BMSCs) produce powerful analgesic effects in animal models of inflammatory pain, neuropathic pain, and cancer pain. We recently demonstrated that intrathecal injection of BMSCs resulted in a long-term relief of neuropathic pain for several weeks after peripheral nerve injury. Strikingly, this analgesic effect is mediated by the anti-inflammatory cytokine transforming growth factor beta secreted from BMSCs. Additionally, BMSCs exhibit potent modulation of neuroinflammation, by inhibiting monocyte infiltration, glial activation, and cytokine/chemokine production in the DRG and spinal cord. Thus, BMSCs control chronic pain by regulation of neuroinflammation in the PNS and CNS via paracrine signaling. In this review, we discuss the similar results from different laboratories of remarkable anti-nociceptive efficacy of BMSCs in animal and clinical studies. We also discuss the mechanisms by which BMSCs control neuroinflammation and chronic pain and how these cells specifically migrate to damaged tissues. |
format | Online Article Text |
id | pubmed-5567062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55670622017-09-04 Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain Huh, Yul Ji, Ru-Rong Chen, Gang Front Immunol Immunology Current treatments for chronic pain, such as inflammatory pain, neuropathic pain, and cancer pain are insufficient and cause severe side effects. Mounting evidence suggests that neuroinflammation in the peripheral and central nervous system (PNS and CNS) plays a pivotal role in the genesis and maintenance of chronic pain. Characteristic features of neuroinflammation in chronic pain conditions include infiltration of immune cells into the PNS [e.g., the sciatic nerve and dorsal root ganglion (DRG)], activation of glial cells such as microglia and astrocytes in the CNS (spinal cord and brain), and production and secretion of pro-inflammatory cytokines and chemokines [TNF, interleukin (IL)-1β, IL-6, CCL2, and CXCL1]. Recent studies suggest that bone marrow stem cells or bone marrow stromal cells (BMSCs) produce powerful analgesic effects in animal models of inflammatory pain, neuropathic pain, and cancer pain. We recently demonstrated that intrathecal injection of BMSCs resulted in a long-term relief of neuropathic pain for several weeks after peripheral nerve injury. Strikingly, this analgesic effect is mediated by the anti-inflammatory cytokine transforming growth factor beta secreted from BMSCs. Additionally, BMSCs exhibit potent modulation of neuroinflammation, by inhibiting monocyte infiltration, glial activation, and cytokine/chemokine production in the DRG and spinal cord. Thus, BMSCs control chronic pain by regulation of neuroinflammation in the PNS and CNS via paracrine signaling. In this review, we discuss the similar results from different laboratories of remarkable anti-nociceptive efficacy of BMSCs in animal and clinical studies. We also discuss the mechanisms by which BMSCs control neuroinflammation and chronic pain and how these cells specifically migrate to damaged tissues. Frontiers Media S.A. 2017-08-21 /pmc/articles/PMC5567062/ /pubmed/28871264 http://dx.doi.org/10.3389/fimmu.2017.01014 Text en Copyright © 2017 Huh, Ji and Chen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Huh, Yul Ji, Ru-Rong Chen, Gang Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title | Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title_full | Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title_fullStr | Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title_full_unstemmed | Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title_short | Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain |
title_sort | neuroinflammation, bone marrow stem cells, and chronic pain |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567062/ https://www.ncbi.nlm.nih.gov/pubmed/28871264 http://dx.doi.org/10.3389/fimmu.2017.01014 |
work_keys_str_mv | AT huhyul neuroinflammationbonemarrowstemcellsandchronicpain AT jirurong neuroinflammationbonemarrowstemcellsandchronicpain AT chengang neuroinflammationbonemarrowstemcellsandchronicpain |