Cargando…
Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking
Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users’ gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. Th...
Autores principales: | Luu, Trieu Phat, Nakagome, Sho, He, Yongtian, Contreras-Vidal, Jose L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567182/ https://www.ncbi.nlm.nih.gov/pubmed/28827542 http://dx.doi.org/10.1038/s41598-017-09187-0 |
Ejemplares similares
-
A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface
por: He, Yongtian, et al.
Publicado: (2018) -
An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding
por: Nakagome, Sho, et al.
Publicado: (2020) -
Electrocortical correlates of human level-ground, slope, and stair walking
por: Luu, Trieu Phat, et al.
Publicado: (2017) -
Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations
por: Luu, Trieu Phat, et al.
Publicado: (2017) -
Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground
por: Brantley, Justin A., et al.
Publicado: (2018)