Cargando…

Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation

We present an engineered nanolattice material with enhanced mechanical properties that can be broadly applied as a thin film over large areas. The nanolattice films consist of ordered, three-dimensional architecture with thin-shell tubular elements, resulting in favorable modulus-density scaling (n...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagal, Abhijeet, Zhang, Xu A., Shahrin, Rahnuma, Dandley, Erinn C., Zhao, Junjie, Poblete, Felipe R., Oldham, Christopher J., Zhu, Yong, Parsons, Gregory N., Bobko, Christopher, Chang, Chih-Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567370/
https://www.ncbi.nlm.nih.gov/pubmed/28831168
http://dx.doi.org/10.1038/s41598-017-09521-6
Descripción
Sumario:We present an engineered nanolattice material with enhanced mechanical properties that can be broadly applied as a thin film over large areas. The nanolattice films consist of ordered, three-dimensional architecture with thin-shell tubular elements, resulting in favorable modulus-density scaling (n ~ 1.1), enhanced energy dissipation, and extremely large material recoverability for strains up to 20% under normal compressive loading. At 95.6% porosity, the nanolattice film has demonstrated modulus of 1.19 GPa and specific energy dissipation of 325.5 kJ/kg, surpassing previously reported values at similar densities. The largest length scale in the reported nanolattice is the 500 nm unit-cell lattice constant, allowing the film to behave more like a continuum material and be visually unobservable. Fabricated using three-dimensional colloidal nanolithography and atomic layer deposition, the process can be scaled for large-area patterning. The proposed nanolattice film can find applications as a robust multifunctional insulating film that can be applied in integrated photonic elements, optoelectronic devices, and microcircuit chips.