Cargando…
MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis
BACKGROUND & AIMS: The paradox of selective hepatic insulin resistance, wherein the insulin-resistant liver fails to suppress glucose production but continues to produce lipids, has been central to the pathophysiology of hepatosteatosis and hyperglycemia. Our study was designed to investigate th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568011/ https://www.ncbi.nlm.nih.gov/pubmed/28025059 http://dx.doi.org/10.1016/j.jhep.2016.12.016 |
_version_ | 1783258792115306496 |
---|---|
author | Wu, Heng Zhang, Tianpeng Pan, Fei Steer, Clifford J. Li, Zhuoyu Chen, Xin Song, Guisheng |
author_facet | Wu, Heng Zhang, Tianpeng Pan, Fei Steer, Clifford J. Li, Zhuoyu Chen, Xin Song, Guisheng |
author_sort | Wu, Heng |
collection | PubMed |
description | BACKGROUND & AIMS: The paradox of selective hepatic insulin resistance, wherein the insulin-resistant liver fails to suppress glucose production but continues to produce lipids, has been central to the pathophysiology of hepatosteatosis and hyperglycemia. Our study was designed to investigate the mechanism(s) by which microRNA-206 alleviates the pathogenesis of hepatosteatosis and hyperglycemia. METHODS: Dietary obese mice induced by a high fat diet were used to study the role of microRNA-206 in the pathogenesis of hepatosteatosis and hyperglycemia. A mini-circle vector was used to deliver microRNA-206 into the livers of mice. RESULTS: Lipid accumulation impaired biogenesis of microRNA-206 in fatty livers of dietary obese mice and human hepatocytes (p <0.01). Delivery of microRNA-206 into the livers of dietary obese mice resulted in the strong therapeutic effects on hepatosteatosis and hyperglycemia. Mechanistically, miR-206 interacted with the 3′ untranslated region of PTPN1 (protein tyrosine phosphatase, non-receptor type 1) and induced its degradation. By inhibiting PTPN1 expression, microRNA-206 facilitated insulin signaling by promoting phosphorylation of INSR (insulin receptor) and impaired hepatic lipogenesis by inhibiting Srebp1c transcription. By simultaneously modulating lipogenesis and insulin signaling, microRNA-206 reduced lipid (p = 0.006) and glucose (p = 0.018) production in human hepatocytes and livers of dietary obese mice (p <0.001 and p <0.01 respectively). Re-introduction of Ptpn1 into livers offset the inhibitory effects of microRNA-206, indicating that PTPN1 mediates the inhibitory effects of microRNA-206 on both hepatosteatosis and hyperglycemia. CONCLUSIONS: MicroRNA-206 is a potent inhibitor of lipid and glucose production by simultaneously facilitating insulin signaling and impairing hepatic lipogenesis. Our findings potentially provide a novel therapeutic agent for both hepatosteatosis and hyperglycemia. |
format | Online Article Text |
id | pubmed-5568011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-55680112017-08-23 MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis Wu, Heng Zhang, Tianpeng Pan, Fei Steer, Clifford J. Li, Zhuoyu Chen, Xin Song, Guisheng J Hepatol Article BACKGROUND & AIMS: The paradox of selective hepatic insulin resistance, wherein the insulin-resistant liver fails to suppress glucose production but continues to produce lipids, has been central to the pathophysiology of hepatosteatosis and hyperglycemia. Our study was designed to investigate the mechanism(s) by which microRNA-206 alleviates the pathogenesis of hepatosteatosis and hyperglycemia. METHODS: Dietary obese mice induced by a high fat diet were used to study the role of microRNA-206 in the pathogenesis of hepatosteatosis and hyperglycemia. A mini-circle vector was used to deliver microRNA-206 into the livers of mice. RESULTS: Lipid accumulation impaired biogenesis of microRNA-206 in fatty livers of dietary obese mice and human hepatocytes (p <0.01). Delivery of microRNA-206 into the livers of dietary obese mice resulted in the strong therapeutic effects on hepatosteatosis and hyperglycemia. Mechanistically, miR-206 interacted with the 3′ untranslated region of PTPN1 (protein tyrosine phosphatase, non-receptor type 1) and induced its degradation. By inhibiting PTPN1 expression, microRNA-206 facilitated insulin signaling by promoting phosphorylation of INSR (insulin receptor) and impaired hepatic lipogenesis by inhibiting Srebp1c transcription. By simultaneously modulating lipogenesis and insulin signaling, microRNA-206 reduced lipid (p = 0.006) and glucose (p = 0.018) production in human hepatocytes and livers of dietary obese mice (p <0.001 and p <0.01 respectively). Re-introduction of Ptpn1 into livers offset the inhibitory effects of microRNA-206, indicating that PTPN1 mediates the inhibitory effects of microRNA-206 on both hepatosteatosis and hyperglycemia. CONCLUSIONS: MicroRNA-206 is a potent inhibitor of lipid and glucose production by simultaneously facilitating insulin signaling and impairing hepatic lipogenesis. Our findings potentially provide a novel therapeutic agent for both hepatosteatosis and hyperglycemia. 2016-12-23 2017-04 /pmc/articles/PMC5568011/ /pubmed/28025059 http://dx.doi.org/10.1016/j.jhep.2016.12.016 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wu, Heng Zhang, Tianpeng Pan, Fei Steer, Clifford J. Li, Zhuoyu Chen, Xin Song, Guisheng MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title | MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title_full | MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title_fullStr | MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title_full_unstemmed | MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title_short | MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
title_sort | microrna-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568011/ https://www.ncbi.nlm.nih.gov/pubmed/28025059 http://dx.doi.org/10.1016/j.jhep.2016.12.016 |
work_keys_str_mv | AT wuheng microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT zhangtianpeng microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT panfei microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT steercliffordj microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT lizhuoyu microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT chenxin microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis AT songguisheng microrna206preventshepatosteatosisandhyperglycemiabyfacilitatinginsulinsignalingandimpairinglipogenesis |