Cargando…
A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification
BACKGROUND: Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be...
Autores principales: | Xie, Xin-Ping, Xie, Yu-Feng, Wang, Hong-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568075/ https://www.ncbi.nlm.nih.gov/pubmed/28830341 http://dx.doi.org/10.1186/s12859-017-1794-6 |
Ejemplares similares
-
Adaptively capturing the heterogeneity of expression for cancer biomarker identification
por: Xie, Xin-Ping, et al.
Publicado: (2018) -
Globally learning gene regulatory networks based on hidden atomic regulators from transcriptomic big data
por: Shi, Ming, et al.
Publicado: (2020) -
Multiple‐cumulative probabilities used to cluster and visualize transcriptomes
por: Jia, Xingang, et al.
Publicado: (2017) -
Transcriptomic analysis and identification of prognostic biomarkers in cholangiocarcinoma
por: Li, Hanyu, et al.
Publicado: (2019) -
Sets, functions, and probability
por: Johnston, John B, et al.
Publicado: (1968)