Cargando…

Temporal and spatial correlation patterns of air pollutants in Chinese cities

As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Yue-Hua, Zhou, Wei-Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568235/
https://www.ncbi.nlm.nih.gov/pubmed/28832599
http://dx.doi.org/10.1371/journal.pone.0182724
Descripción
Sumario:As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O(3), the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O(3) is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM(10) and O(3), the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues.