Cargando…
Word2Vec inversion and traditional text classifiers for phenotyping lupus
BACKGROUND: Identifying patients with certain clinical criteria based on manual chart review of doctors’ notes is a daunting task given the massive amounts of text notes in the electronic health records (EHR). This task can be automated using text classifiers based on Natural Language Processing (NL...
Autores principales: | Turner, Clayton A., Jacobs, Alexander D., Marques, Cassios K., Oates, James C., Kamen, Diane L., Anderson, Paul E., Obeid, Jihad S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568290/ https://www.ncbi.nlm.nih.gov/pubmed/28830409 http://dx.doi.org/10.1186/s12911-017-0518-1 |
Ejemplares similares
-
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
Sentiment Thesaurus, Synset and Word2Vec Based Improvement in Bigram Model for Classifying Product Reviews
por: Poomagal, S., et al.
Publicado: (2022) -
Impact of De-Identification on Clinical Text Classification Using
Traditional and Deep Learning Classifiers
por: Obeid, Jihad S., et al.
Publicado: (2019) -
Improving the Polarity of Text through word2vec Embedding for Primary Classical Arabic Sentiment Analysis
por: Aoumeur, Nour Elhouda, et al.
Publicado: (2023)