Cargando…
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
BACKGROUND: Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin’s Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels...
Autores principales: | Eekhout, Iris, van de Wiel, Mark A., Heymans, Martijn W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568368/ https://www.ncbi.nlm.nih.gov/pubmed/28830466 http://dx.doi.org/10.1186/s12874-017-0404-7 |
Ejemplares similares
-
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018) -
A Bayesian hierarchical logistic regression model of multiple informant family health histories
por: Lin, Jielu, et al.
Publicado: (2019) -
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Don’t dismiss logistic regression: the case for sensible extraction of interactions in the era of machine learning
por: Levy, Joshua J., et al.
Publicado: (2020)